In a variety of aposematic species, the conspicuousness of an individual's warning signal and the quantity of its chemical defence are positively correlated. This apparent honest signalling is predicted by resource competition models which assume that the production and maintenance of aposematic defences compete for access to antioxidant molecules that have dual functions as pigments and in protecting against oxidative damage. To test for such trade-offs, we raised monarch butterflies () on different species of their milkweed host plants (Apocynaceae) that vary in quantities of cardenolides to test whether (i) the sequestration of cardenolides as a secondary defence is associated with costs in the form of oxidative lipid damage and reduced antioxidant defences; and (ii) lower oxidative state is associated with a reduced capacity to produce aposematic displays.
View Article and Find Full Text PDFBackground: Animals use diverse antipredator mechanisms, including visual signalling of aversive chemical defence (aposematism). However, the initial evolution of aposematism poses the problem that the first aposematic individuals are conspicuous to predators who have not learned the significance of the warning colouration. In one scenario, aposematism evolves in group-living species and originally persisted due to kin selection or positive frequency-dependent selection in groups.
View Article and Find Full Text PDFWe introduce a general theoretical description of a combination of defences acting sequentially at different stages in the predatory sequence in order to make predictions about how animal prey should best allocate investment across different defensive stages. We predict that defensive investment will often be concentrated at stages early in the interaction between a predator individual and the prey (especially if investment is concentrated in only one defence, then it will be in the first defence). Key to making this prediction is the assumption that there is a cost to a prey when it has a defence tested by an enemy, for example because this incurs costs of deployment or tested costs as a defence is exposed to the enemies; and the assumption that the investment functions are the same among defences.
View Article and Find Full Text PDFThe defences used by organisms against predators display a great degree of variability. Defence phenotypes can differ substantially among individuals of the same species, and a single individual can itself deploy a variety of defences. Here, we use a mathematical model that includes mutation and selection to understand the evolutionary origin of this variability in a population of a species that deploys defences sequentially ("first" and "second" defences).
View Article and Find Full Text PDFAposematism is a well-known strategy in which prey defend themselves from predation by pairing defenses such as toxins, with warning signals that are often visually conspicuous color patterns. Here, we examine the possibility that aposematism can be induced in a host by colonies of infectious parasites in order to protect the parasites from the consequences of attacks on the host. Earlier studies show that avian predators are reluctant to feed on carcasses of host prey that are infected with the entomopathogenic nematode, .
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
May 2017
While much of evolutionary biology attempts to explain the processes of diversification, there is an important place for the study of phenotypic similarity across life forms. When similar phenotypes evolve independently in different lineages this is referred to as convergent evolution. Although long recognised, evolutionary convergence is receiving a resurgence of interest.
View Article and Find Full Text PDFInconspicuous prey pay a cost of reduced feeding opportunities. Flowers are highly nutritious but are positioned where prey would be apparent to predators and often contain toxins to reduce consumption. However, many herbivores are specialized to subvert these defenses by retaining toxins for their own use.
View Article and Find Full Text PDFThe "escape-and-radiate" hypothesis predicts that antipredator defenses facilitate adaptive radiations by enabling escape from constraints of predation, diversified habitat use, and subsequently speciation. Animals have evolved diverse strategies to reduce the direct costs of predation, including cryptic coloration and behavior, chemical defenses, mimicry, and advertisement of unprofitability (conspicuous warning coloration). Whereas the survival consequences of these alternative defenses for individuals are well-studied, little attention has been given to the macroevolutionary consequences of alternative forms of defense.
View Article and Find Full Text PDFMany plant species produce defensive compounds that are often highly diverse within and between populations. The genetic and cellular mechanisms by which metabolite diversity is produced are increasingly understood, but the evolutionary explanations for persistent diversification in plant secondary metabolites have received less attention. Here we consider the role of plant-herbivore coevolution in the maintenance and characteristics of diversity in plant secondary metabolites.
View Article and Find Full Text PDFBoth theoretical and laboratory research suggests that many prey animals should live in a solitary, dispersed distribution unless they lack repellent defences such as toxins, venoms and stings. Chemically defended prey may, by contrast, benefit substantially from aggregation because spatial localization may cause rapid predator satiation on prey toxins, protecting many individuals from attack. If repellent defences promote aggregation of prey, they also provide opportunities for new social interactions; hence the consequences of defence may be far reaching for the behavioural biology of the animal species.
View Article and Find Full Text PDFWarning signals within species, such as the bright colors of chemically defended animals, are usually considered mutualistic, monomorphic traits. Such a view is however increasingly at odds with the growing empirical literature, showing nontrivial levels of signal variation within prey populations. Key to understanding this variation, we argue, could be a recognition that toxicity levels frequently vary within populations because of environmental heterogeneity.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
November 2012
Defensive toxins are widely used by animals, plants and micro-organisms to deter natural enemies. An important characteristic of such defences is diversity both in the quantity of toxins and the profile of specific defensive chemicals present. Here we evaluate evolutionary and ecological explanations for the persistence of toxin diversity within prey populations, drawing together a range of explanations from the literature, and adding new hypotheses.
View Article and Find Full Text PDFMany invertebrate herbivores sequester plant toxins from their food, and the availability of toxins and the costs and benefits of sequestering toxins may influence food patch choice. In many plants, young leaves contain higher concentrations of toxins than old leaves and so can be preferred by sequestering herbivores, even if herbivores are more readily detected by predators when on them. We modelled patch use and sequestration strategies for the growth period of herbivores, assuming that the effectiveness of a toxin against predators is positively related to its cost of sequestration and that high-reward patches have higher predation risk.
View Article and Find Full Text PDFMüllerian mimicry describes the close resemblance between aposematic prey species; it is thought to be beneficial because sharing a warning signal decreases the mortality caused by sampling by inexperienced predators learning to avoid the signal. It has been hypothesized that selection for mimicry is strongest in multi-species prey communities where predators are more prone to misidentify the prey than in simple communities. In this study, wild great tits (Parus major) foraged from either simple (few prey appearances) or complex (several prey appearances) artificial prey communities where a specific model prey was always present.
View Article and Find Full Text PDFAbstract Although signal reliability is of fundamental importance to the understanding of animal communication, the extent of signal honesty in relation to antipredator warning signals has received relatively little attention. A recent theoretical model that assumed a physiological linkage between pigmentation and toxicity suggested that (aposematic) warning signals may often be reliable, in the sense that brightness and toxicity are positively correlated within prey populations. Two shortcomings of the model were (1) the requirement among predators for an innate aversion to brightly colored prey and (2) the assumption that prey can generate only bright coloration and not cryptic coloration.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2011
Predation is a fundamental process in the interaction between species, and exerts strong selection pressure. Hence, anti-predatory traits have been intensively studied. Although it has long been speculated that individuals of some species gain protection from predators by sometimes almost-uncanny resemblances to uninteresting objects in the local environment (such as twigs or stones), demonstration of antipredatory benefits to such "masquerade" have only very recently been demonstrated, and the fundamental workings of this defensive strategy remain unclear.
View Article and Find Full Text PDF1. Utilization of plant secondary compounds for antipredator defence is common in immature herbivorous insects. Such defences may incur a cost to the animal, either in terms of survival, growth rate or in the reproductive success.
View Article and Find Full Text PDFThe nature of signal mimicry between defended prey (known as Müllerian mimicry) is controversial. Some authors assert that it is always mutualistic and beneficial, whilst others speculate that less well defended prey may be parasitic and degrade the protection of their better defended co-mimics (quasi-Batesian mimicry). Using great tits (Parus major) as predators of artificial prey, we show that mimicry between unequally defended co-mimics is not mutualistic, and can be parasitic and quasi-Batesian.
View Article and Find Full Text PDFAnimals that deploy chemical defences against predators often signal their unprofitability using bright colouration. This pairing of toxicity and conspicuous patterning is known as aposematism. Explaining the evolution and spread of aposematic traits in previously cryptic species has been the focus of much empirical and theoretical work over the last two decades.
View Article and Find Full Text PDFMany animals use bright colouration to advertise their toxicity to predators. It is now well established that both toxicity and colouration are often variable within prey populations, yet it is an open question whether or not brighter signals should be used by the more toxic members of the population. We therefore describe a model in which signal honesty can easily be explained.
View Article and Find Full Text PDFWe apply signal detection methodology to make predictions about the evolution of Batesian mimicry. Our approach is novel in three ways. First, we applied a deterministic evolutionary modeling system that allows a large number of alternative mimetic morphs to coexist and compete.
View Article and Find Full Text PDFIn 1879, Fritz Müller hypothesized that mimetic resemblance in which defended prey display the same warning signal would share the costs of predator education. Although Müller argued that predators would need to ingest a fixed number of prey with a given visual signal when learning to avoid unpalatable prey, this assumption lacks empirical support. We report an experiment which shows that, as the number of unpalatable prey presented to them increased, avian predators attacked higher numbers of those prey.
View Article and Find Full Text PDFTheories of aposematism often focus on the idea that warning displays evolve because they work as effective signals to predators. Here, we argue that aposematism may instead evolve because, by enhancing protection, it enables animals to become more exposed and thereby gain resource-gathering benefits, for example, through a wider foraging niche. Frequency-dependent barriers (caused by enhanced conspicuousness relative to other prey and low levels of predator education) are generally assumed to make the evolution of aposematism particularly challenging.
View Article and Find Full Text PDFMasquerade describes the resemblance of an organism to an inedible object and is hypothesized to facilitate misidentification of that organism by its predators or its prey. To date, there has been no empirical demonstration of the benefits of masquerade. Here, we show that two species of caterpillar obtain protection from an avian predator by being misidentified as twigs.
View Article and Find Full Text PDF