Publications by authors named "Michael P Seiler"

The differentiation of several T- and B-cell effector programs in the immune system is directed by signature transcription factors that induce rapid epigenetic remodelling. Here we report that promyelocytic leukaemia zinc finger (PLZF), the BTB-zinc finger (BTB-ZF) transcription factor directing the innate-like effector program of natural killer T-cell thymocytes, is prominently associated with cullin 3 (CUL3), an E3 ubiquitin ligase previously shown to use BTB domain-containing proteins as adaptors for substrate binding. PLZF transports CUL3 to the nucleus, where the two proteins are associated within a chromatin-modifying complex.

View Article and Find Full Text PDF

Interactions driven by the T cell antigen receptor (TCR) determine the lineage fate of CD4(+)CD8(+) thymocytes, but the molecular mechanisms that induce the lineage-determining transcription factors are unknown. Here we found that TCR-induced transcription factors Egr2 and Egr1 had higher and more-prolonged expression in precursors of the natural killer T (NKT) than in cells of conventional lineages. Chromatin immunoprecipitation followed by deep sequencing showed that Egr2 directly bound and activated the promoter of Zbtb16, which encodes the NKT lineage-specific transcription factor PLZF.

View Article and Find Full Text PDF

Adenovirus-mediated gene therapy holds significant potential especially for applications requiring high levels of target tissue transduction. While significant advances in clinical adenoviral gene therapy applications have been made in cancer, the clinical translation of adenoviral gene replacement therapy for genetic disease has lagged. Encouragingly, advances in vector production have led to the development of Helper-Dependent ("gutted" or "high capacity") adenoviral vectors (HDV) deleted of all viral coding genes.

View Article and Find Full Text PDF

Bioengineering of the factor VIII (FVIII) molecule has led to the production of variants that overcome poor secretion and/or rapid inactivation. We tested six modified FVIII variants for in vivo efficacy by expressing them from helper-dependent adenoviral (HD-Ad) vectors. We constructed a wild-type (WT) variant, a B-domain-deleted (BDD) variant, a point mutant for improved secretion (F309S), a variant with a partial B-domain deletion for improved secretion (N6), a combination of the point mutant and partial BDD variant (F309N6), and an inactivation-resistant (IR8) FVIII variant.

View Article and Find Full Text PDF

Dendritic cells (DCs) are essential for initiating and directing antigen-specific T-cell responses. Genetic modification of DC is under study for cancer immunotherapy, vaccine development, and antigen-targeted immunosuppression. Adenovirus (Ad) type 5 (Ad5)-mediated gene transfer to mouse bone marrow DCs and human monocyte-derived DCs is inefficient because neither express the cognate high-affinity Ads receptor.

View Article and Find Full Text PDF

A major obstacle to the clinical application of systemic adenoviral gene replacement therapy is the host innate immune response. Although recent studies have attempted to characterize the cellular basis for this response to systemically administered helper-dependent adenoviral vector (HD-Ad), the underlying molecular components of the innate immune repertoire required to recognize the viral vector have yet to be identified. Here, we show that primary macrophages can sense HD-Ad vectors via the Toll-like Receptor 9 (TLR9) and respond by increasing pro-inflammatory cytokine secretion.

View Article and Find Full Text PDF

The transduction efficiency of adeno-associated virus (AAV) vectors in various somatic tissues is determined primarily by the viral capsid proteins. In contrast to vectors made with AAV type 2 capsids, those having type 5 or 6 capsids show high transduction rates in airway epithelial cells, in a range that should be sufficient for treating lung disease. Here we have compared the properties of vectors made with AAV5 or AAV6 capsid proteins to determine whether their receptor usage is similar, and found several differences between the viruses.

View Article and Find Full Text PDF

Establishment and maintenance of epithelial cell polarity depend on cytoskeletal organization and protein trafficking to polarized cortical membranes. ERM (ezrin, radixin, moesin) family members link polarized proteins with cytoskeletal actin. Although ERMs are often considered to be functionally similar, we found that, in airway epithelial cells, apical localization of ERMs depend on cell differentiation and is independently regulated.

View Article and Find Full Text PDF

Adenovirus-mediated gene transfer to airway epithelia is inefficient in part because its receptor is absent on the apical surface of the airways. Targeting adenovirus to other receptors, increasing the viral concentration, and even prolonging the incubation time with adenovirus vectors can partially overcome the lack of receptors and facilitate gene transfer. Unfortunately, mucociliary clearance would prevent prolonged incubation time in vivo.

View Article and Find Full Text PDF