Publications by authors named "Michael P Sarras"

Gestational diabetes mellitus (GDM) is a frequently observed complication of pregnancy and is associated with an elevated risk of adverse maternal and neonatal outcomes. Many women with GDM will go on to have future pregnancies, and these pregnancies may or may not be affected by GDM. We conducted a literature search, and based on data from key studies retrieved during the search, we describe the epidemiology of GDM recurrence.

View Article and Find Full Text PDF

The Center for Disease Control and Prevention ranks diabetes mellitus (DM) as the seventh leading cause of death in the USA. The most prevalent forms of DM include Type 2 DM, Type 1 DM, and gestational diabetes mellitus (GDM). While the acute problem of diabetic hyperglycemia can be clinically managed through dietary control and lifestyle changes or pharmacological intervention with oral medications or insulin, long-term complications of the disease are associated with significant morbidity and mortality.

View Article and Find Full Text PDF

Metabolic memory (MM) is defined as the persistence of diabetic (DM) complications even after glycemic control is pharmacologically achieved. Using a zebrafish diabetic model that induces a MM state, we previously reported that, in this model, tissue dysfunction was of a heritable nature based on cell proliferation studies in limb tissue and this correlated with epigenetic DNA methylation changes that paralleled alterations in gene expression. In the current study, control, DM, and MM excised fin tissues were further analyzed by MeDIP sequencing and microarray techniques.

View Article and Find Full Text PDF

Diabetes mellitus (DM) is classified as a disease of metabolic dysregulation predicted to affect over 400 million individuals world-wide by 2030. The debilitating aspects of this disease are the long term complications involving microvascular and macrovascular pathologies. These long term complications are related to the clinical phenomenon of metabolic memory (MM) that is defined as the persistence of diabetic complications even after glycemic control has been pharmacologically achieved.

View Article and Find Full Text PDF

We previously reported a zebrafish model of type I diabetes mellitus (DM) that can be used to study the hyperglycemic (HG) and metabolic memory (MM) states within the same fish. Clinically, MM is defined as the persistence of diabetic complications even after glycemic control is pharmacologically achieved. In our zebrafish model, MM occurs following β-cell regeneration, which returns fish to euglycemia.

View Article and Find Full Text PDF

Due to the clinical importance of hearing and balance disorders in man, model organisms such as the zebrafish have been used to study lateral line development and regeneration. The zebrafish is particularly attractive for such studies because of its rapid development time and its high regenerative capacity. To date, zebrafish studies of lateral line regeneration have mainly utilized fish of the embryonic and larval stages because of the lower number of neuromasts at these stages.

View Article and Find Full Text PDF

Studies from human cells, rats, and zebrafish have documented that hyperglycemia (HG) induces the demethylation of specific cytosines throughout the genome. We previously documented that a subset of these changes become permanent and may provide, in part, a mechanism for the persistence of complications referred to as the metabolic memory phenomenon. In this report, we present studies aimed at elucidating the molecular machinery that is responsible for the HG-induced DNA demethylation observed.

View Article and Find Full Text PDF

Diabetes mellitus currently affects 346 million individuals and this is projected to increase to 400 million by 2030. Evidence from both the laboratory and large scale clinical trials has revealed that diabetic complications progress unimpeded via the phenomenon of metabolic memory even when glycemic control is pharmaceutically achieved. Gene expression can be stably altered through epigenetic changes which not only allow cells and organisms to quickly respond to changing environmental stimuli but also confer the ability of the cell to "memorize" these encounters once the stimulus is removed.

View Article and Find Full Text PDF

As previously reported by our laboratory, streptozocin-induced diabetes mellitus (DM) in adult zebrafish results in an impairment of tissue regeneration as monitored by caudal fin regeneration. Following streptozocin withdrawal, a recovery phase occurs to reestablish euglycemia, via pancreatic beta-cell regeneration. However, DM-associated impaired fin regeneration continues indefinitely in the metabolic memory (MM) state, allowing for subsequent molecular analysis of the underlying mechanisms of MM.

View Article and Find Full Text PDF

Recent estimates indicate that diabetes mellitus currently affects more than 10 % of the world's population. Evidence from both the laboratory and large scale clinical trials has revealed that prolonged hyperglycemia induces chronic complications which persist and progress unimpeded even when glycemic control is pharmaceutically achieved via the phenomenon of metabolic memory. The epigenome is comprised of all chromatin modifications including post translational histone modification, expression control via miRNAs and the methylation of cytosine within DNA.

View Article and Find Full Text PDF

The body wall of Hydra is organized as an epithelial bilayer (ectoderm and endoderm) with an intervening extracellular matrix (ECM), termed mesoglea by early biologists. Morphological studies have determined that Hydra ECM is composed of two basal lamina layers positioned at the base of each epithelial layer with an intervening interstitial matrix. Molecular and biochemical analyses of Hydra ECM have established that it contains components similar to those seen in more complicated vertebrate species.

View Article and Find Full Text PDF

Metabolic memory (MM) is the phenomenon whereby diabetes complications persist and progress after glycemic recovery is achieved. Here, we present data showing that MM is heritable and that the transmission correlates with hyperglycemia-induced DNA hypomethylation and aberrant gene expression. Streptozocin was used to induce hyperglycemia in adult zebrafish, and then, following streptozocin withdrawal, a recovery phase was allowed to reestablish a euglycemic state.

View Article and Find Full Text PDF

Growth and morphogenesis during embryonic development, asexual reproduction and regeneration require extensive remodeling of the extracellular matrix (ECM). We used the simple metazoan Hydra to examine the fate of ECM during tissue morphogenesis and asexual budding. In growing Hydra, epithelial cells constantly move towards the extremities of the animal and into outgrowing buds.

View Article and Find Full Text PDF

The zebrafish (Danio rerio) is an established model organism for the study of developmental processes, human disease, and tissue regeneration. We report that limb regeneration is severely impaired in our newly developed adult zebrafish model of type I diabetes mellitus. Intraperitoneal streptozocin injection of adult, wild-type zebrafish results in a sustained hyperglycemic state as determined by elevated fasting blood glucose values and increased glycation of serum protein.

View Article and Find Full Text PDF

Hydra, as an early diploblastic metazoan, has a well-defined extracellular matrix (ECM) called mesoglea. It is organized in a tri-laminar pattern with one centrally located interstitial matrix that contains type I collagen and two sub-epithelial zones that resemble a basal lamina containing laminin and possibly type IV collagen. This study used monoclonal antibodies to the three hydra mesoglea components (type I, type IV collagens and laminin) and immunofluorescent staining to visualize hydra mesoglea structure and the relationship between these mesoglea components.

View Article and Find Full Text PDF

Hox genes are re-expressed during regeneration in many species. Given their important role in body plan development, it has been assumed, but not directly shown, that they play a functional role in regeneration. In this paper we show that morpholino-mediated knockdown of either Hoxc13a or Hoxc13b during the process of zebrafish tail fin regeneration results in a significant reduction of regenerative outgrowth.

View Article and Find Full Text PDF

A collagen-based extracellular matrix is one defining feature of all Metazoa. The thick sheet-like extracellular matrix (mesoglia) of the diploblast, hydra, has characteristics of both a basement membrane and an interstitial matrix. Several genes associated with mesoglea have been cloned including a basement membrane and fibrillar collagen and an A and B chain of laminin.

View Article and Find Full Text PDF

Increased interest in using zebrafish as a model organism has led to a resurgence of fin regeneration studies. This has allowed for the identification of a large number of gene families, including signaling molecules and transcription factors, which are expressed during regeneration. However, in cases where no specific inhibitor is available for the gene product of interest, determination of a functional role for these genes has been difficult.

View Article and Find Full Text PDF

Cre-mediated site-specific recombination has become an invaluable tool for manipulation of the murine genome. The ability to conditionally activate gene expression or to generate chromosomal alterations with this same tool would greatly enhance zebrafish genetics. This study demonstrates that the HSP70 promoter can be used to inducibly control expression of an enhanced green fluorescent protein (EGFP) -Cre fusion protein.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play key roles in the turnover of extracellular matrix (ECM) and, thereby, function as key regulators of cell-ECM interactions during development. In spite of their importance during developmental processes, relatively little has been reported about the role of these metalloproteinases during limb development and regeneration. To approach the problem of cell-ECM interactions during limb (fin) regeneration, we have utilized zebrafish as an experimental model.

View Article and Find Full Text PDF

Vertebrate Hox genes are generally believed to initiate expression at the primitive streak or early neural plate stages. The timing and spatial restrictions of the Hox expression patterns during these stages correlate well with their demonstrated role in axial patterning. Here we demonstrate that one zebrafish hoxc13 ortholog, hoxc13a, has an expression pattern in the developing tail bud that is consistent with the gene playing a role in axial patterning.

View Article and Find Full Text PDF

Gelatinase A, also called matrix metalloproteinase 2 (MMP-2), belongs to the matrix metalloproteinase (MMP) family. MMP-2 cleaves type IV collagen, denatured collagen (gelatin), and other extracellular matrix (ECM) components. MMP-2 has been reported to be involved in a number of biological and pathological processes, but previous studies have not indicated that its expression is essential for early embryogenesis.

View Article and Find Full Text PDF

Matrix metalloproteinases (MMPs) play important roles in the turnover of components of extracellular matrix (ECM) and in the processing of active and latent-signaling molecules bound to the ECM or associated with the cell surface. Through such actions, MMPs regulate a variety of cellular and developmental processes. Membrane-type matrix metalloproteinases (MT-MMPs) are of particular importance because they function in the immediate pericellular environment that modulates both cell-cell and cell-ECM interactions.

View Article and Find Full Text PDF

MMP activities are controlled by a combination of proteolytic pro-enzyme activation steps and inhibition by endogenous inhibitors like alpha2-macroglobulin and the tissue inhibitors of metalloproteinases (TIMPs). TIMPs are the key inhibitors in tissue. The expression of both MMPs and TIMPs is controlled during tissue remodeling to maintain a balance in the turnover of extracellular matrix.

View Article and Find Full Text PDF

Metalloproteinases have a critical role in a broad spectrum of cellular processes ranging from the breakdown of extracellular matrix to the processing of signal transduction-related proteins. These hydrolytic functions underlie a variety of mechanisms related to developmental processes as well as disease states. Structural analysis of metalloproteinases from both invertebrate and vertebrate species indicates that these enzymes are highly conserved and arose early during metazoan evolution.

View Article and Find Full Text PDF