Apolipoprotein AI (apoA-I) is the principal acceptor of lipids from ATP-binding cassette transporter A1, a process that yields nascent high density lipoproteins. Analysis of lipidated apoA-I conformation yields a belt or twisted belt in which two strands of apoA-I lie antiparallel to one another. In contrast, biophysical studies have suggested that a part of lipid-free apoA-I was arranged in a four-helix bundle.
View Article and Find Full Text PDFPurpose: Breast cancers that over-express a lipoxygenase or cyclooxygenase are associated with poor survival possibly because they overproduce metabolites that alter the cancer's malignant behaviors. However, these metabolites and behaviors have not been identified. We here identify which metabolites among those that stimulate breast cancer cell proliferation in vitro are associated with rapidly proliferating breast cancer.
View Article and Find Full Text PDFA 15-LOX, it is proposed, suppresses the growth of prostate cancer in part by converting arachidonic, eicosatrienoic, and/or eicosapentaenoic acids to n-6 hydroxy metabolites. These metabolites inhibit the proliferation of PC3, LNCaP, and DU145 prostate cancer cells but only at ≥1-10 µM. We show here that the 15-LOX metabolites of docosahexaenoic acid (DHA), 17-hydroperoxy-, 17-hydroxy-, 10,17-dihydroxy-, and 7,17-dihydroxy-DHA inhibit the proliferation of these cells at ≥0.
View Article and Find Full Text PDFObjectives: Identifying the likelihood of a patient having coronary artery disease (CAD) at the time of emergency department (ED) presentation with chest pain could reduce the need for stress testing or coronary imaging after myocardial infarction (MI) has been excluded. The authors aimed to determine if a novel cardiac biomarker consisting of plasma cholesteryl ester (CE) levels typically derived from the activity of the enzyme acyl-CoA:cholesterol acyltransferase (ACAT2) are predictive of CAD in a clinical model.
Methods: A single-center prospective cohort design enrolled participants with symptoms of acute coronary syndrome (ACS) undergoing coronary computed tomography angiography (CCTA) or invasive angiography.
Apolipoprotein A-I Milano (apoA-I(Milano)) is a naturally occurring human mutation of wild-type apolipoprotein A-I (apoA-I(WT)) having cystine substituted for arginine(173). Two molecules of apo-I(WT) form disks with phospholipid having a defined relationship between the apoA-I(WT) molecules. ApoA-I(Milano) forms cystine homodimers that would not allow the protein to adopt the conformation reported for apoA-I(WT).
View Article and Find Full Text PDFThe conformational constraints for apoA-I bound to recombinant phospholipid complexes (rHDL) were attained from a combination of chemical cross-linking and mass spectrometry. Molecular distances were then used to refine models of lipid-bound apoA-I on both 80 and 96 A diameter rHDL particles. To obtain molecular constraints on the protein bound to phospholipid complexes, three different lysine-selective homo-bifunctional cross-linkers with increasing spacer arm lengths (i.
View Article and Find Full Text PDFIn this report, methods are described to isolate milligram quantities of a mutant apolipoprotein A-I (apoA-I) protein for use in structure-function studies. Expression of the L159R apoA-I mutation in humans reduces the concentration of plasma wild-type apoA-I, thus displaying a dominant negative phenotype in vivo. Earlier attempts to express and isolate this mutant protein resulted in extensive degradation and protein misfolding.
View Article and Find Full Text PDFThe structure of apoA-I on discoidal high density lipoprotein (HDL) was studied using a combination of chemical cross-linking and mass spectrometry. Recombinant HDL particles containing 145 molecules of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and two molecules of apoA-I with a 96-A diameter were treated with the lysine-specific cross-linker, dithiobis(succinimidylpropionate) at varying molar ratios from 2:1 to 200:1. At low molar ratios of dithiobis(succinimidylpropionate) to apoA-I, two products were obtained corresponding to approximately 53 and approximately 80 kDa.
View Article and Find Full Text PDFPlatelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) is a potent inflammatory mediator produced by cells in response to physical or chemical stress. The mechanisms linking cell injury to PAF synthesis are unknown. We used liquid chromatography-tandem mass spectrometry to investigate stress-induced PAF synthesis in human neutrophils.
View Article and Find Full Text PDFWe describe an improved assay for platelet-activating factor (PAF; 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) using HPLC-tandem mass spectrometry (LC-MS/MS). The present method can readily detect as little as 1 pg (1.9 fmol) of PAF, a significant improvement over previously described LC-MS/MS methods, and gives a linear response up to 1,000 pg of PAF.
View Article and Find Full Text PDF