Publications by authors named "Michael P S Booth"

Metallo-β-lactamases (MBLs) hydrolyze almost all classes of β-lactam antibiotic, including carbapenems-currently first choice drugs for opportunistic infections by Gram-negative bacterial pathogens. MBL inhibitor development is complicated by the diversity within this group of enzymes, and by the appearance of new enzymes that continue to be identified both as chromosomal genes and on mobile genetic elements. One such newly discovered MBL is DIM-1, a mobile enzyme originally discovered in the opportunist pathogen Pseudomonas stutzeri but subsequently identified in other species and locations.

View Article and Find Full Text PDF

Cfr is a radical-SAM (S-adenosyl-L-methionine) enzyme that methylates the 8 position of 23S rRNA residue A2503 to confer resistance to multiple antibiotic classes acting upon the large subunit of the bacterial ribosome. Radical-SAM enzymes use an Fe-S cluster to generate the 5'-deoxyadenosyl (DOA) radical from SAM, enabling them to modify intrinsically unreactive centres such as adenosine C8. However, despite its mechanistic interest and clinical relevance, until recently Cfr remained little characterised.

View Article and Find Full Text PDF

Human glyoxylate reductase/hydroxypyruvate reductase (GRHPR) is a D-2-hydroxy-acid dehydrogenase that plays a critical role in the removal of the metabolic by-product glyoxylate from within the liver. Deficiency of this enzyme is the underlying cause of primary hyperoxaluria type 2 (PH2) and leads to increased urinary oxalate levels, formation of kidney stones and renal failure. Here we describe the crystal structure of human GRHPR at 2.

View Article and Find Full Text PDF