Purple sea urchins (Strongylocentrotus purpuratus) profoundly impact nearshore rocky coasts through their feeding habits. Their intense grazing sculpts substrates through bioerosion using their teeth and spines and controls the alternative stable state dynamic between kelp bed and urchin barrens. These states have contrasting food availability for sea urchins, with abundant food in kelp beds and scarce food in barren grounds.
View Article and Find Full Text PDFClimate change will increase the frequency and intensity of extreme climatic events (e.g., storms) that result in repeated pulses of hyposalinity in nearshore ecosystems.
View Article and Find Full Text PDFClimate change will increase the frequency and intensity of low-salinity (hyposalinity) events in coastal marine habitats. Sea urchins are dominant herbivores in these habitats and are generally intolerant of salinity fluctuations. Their adhesive tube feet are essential for survival, effecting secure attachment and locomotion in high wave energy habitats, yet little is known about how hyposalinity impacts their function.
View Article and Find Full Text PDFRegenerating structures critical for survival provide excellent model systems for the study of phenotypic plasticity. These body components must regenerate their morphology and functionality quickly while subjected to different environmental stressors. Sea urchins live in high-energy environments where hydrodynamic conditions pose significant challenges.
View Article and Find Full Text PDFSea urchins native to the nearshore open coast experience periods of high, repeated wave forces that can result in dislodgement. To remain attached while clinging and locomoting across rocky substrates, sea urchins use adhesive tube feet. Purple sea urchins () adhere to a variety of rock substrates (e.
View Article and Find Full Text PDFSea urchins are dominant members of rocky temperate reefs around the world. They often occur in cavities within the rock, and fit so tightly, it is natural to assume they sculpted these "pits." However, there are no experimental data demonstrating they bore pits.
View Article and Find Full Text PDFAlthough Echinodermata is one of the only stenohaline phyla in the animal kingdom, several species show remarkable abilities to acclimate and survive in euryhaline habitats. The last comprehensive review of this topic was over 25 years ago and much work has been published since. These recent studies expand the field reports of species living in hyposaline environments and detail experimental research on the responses, physiological range, and limits of echinoderms to salinity challenges.
View Article and Find Full Text PDF