Mice lacking the vascular endothelial growth factor (VEGF) receptor flt-1 (VEGFR-1) die from vascular overgrowth, caused primarily by aberrant endothelial cell division (Kearney JB, Ambler CA, Monaco KA, Johnson N, Rapoport RG, Bautch VL: Vascular endothelial growth factor receptor Flt-1 negatively regulates developmental blood vessel formation by modulating endothelial cell division. Blood 2002, 99:2397-2407). Because a second high-affinity VEGF receptor, flk-1, produces a positive endothelial proliferation signal, it was logical to ask whether flt-1 affects developmental blood vessel formation by modulating signaling through flk-1.
View Article and Find Full Text PDFIn this study, we generated transgenic mice that overexpressed either a constitutively active human c-src mutant (src(530)) or a wild-type human c-src (src(wt)) in epidermal basal cells driven by human keratin 14 (HK14) or bovine keratin 5 (BK5) promoters, respectively. HK14.src(530) transgenic mice developed severe epidermal hyperplasia and hyperkeratosis, and did not survive beyond 3 weeks of age.
View Article and Find Full Text PDFAs an incidental finding in a study of mammary tumorigenesis, two lines of genetically engineered mice were observed to develop pigmentation changes of the fur. Mice with targeted mutations of the Rb1 (Rb) and Cdkn1b (p27kip1) genes were crossed from C57BL/6 (black coat color; eumelanin) and 129Sv (wild-type agouti coat color) backgrounds, respectively, to one with a dominant yellow coat color (phaeomelanin) carrying a transgene for Agouti under a keratinocyte specific promoter. Both Rb+/- and p27-/- mice developed pituitary tumors of the pars intermedia that were associated with a switch to black (eumelanic) fur but were not observed in sibling Rb+/+ and p27+/+ mice.
View Article and Find Full Text PDF