Background: Stress responses are believed to involve corticotropin releasing factor (CRF), its two cognate receptors (CRF and CRF), and the CRF-binding protein (CRFBP). Whereas decades of research has focused on CRF, the role of CRF in the central nervous system (CNS) has not been thoroughly investigated. We have previously reported that CRF, interacting with a C terminal fragment of CRFBP, CRFBP(10kD), may have a role in the modulation of neuronal activity.
View Article and Find Full Text PDFAntimicrob Agents Chemother
April 2022
In , the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making GluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound -(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective GluPho inhibitor with robust nanomolar activity against recombinant GluPho, G6PD, and P.
View Article and Find Full Text PDFObesity-associated insulin resistance plays a central role in the pathogenesis of type 2 diabetes. A promising approach to decrease insulin resistance in obesity is to inhibit the protein tyrosine phosphatases that negatively regulate insulin receptor signaling. The low-molecular-weight protein tyrosine phosphatase (LMPTP) acts as a critical promoter of insulin resistance in obesity by inhibiting phosphorylation of the liver insulin receptor activation motif.
View Article and Find Full Text PDFSmall molecule neurotensin receptor 1 (NTSR1) agonists have been pursued for more than 40 years as potential therapeutics for psychiatric disorders, including drug addiction. Clinical development of NTSR1 agonists has, however, been precluded by their severe side effects. NTSR1, a G protein-coupled receptor (GPCR), signals through the canonical activation of G proteins and engages β-arrestins to mediate distinct cellular signaling events.
View Article and Find Full Text PDFJ Thorac Oncol
December 2019
Introduction: Despite the enthusiasm surrounding cancer immunotherapy, most SCLC patients show very modest response to immune checkpoint inhibitor monotherapy treatment. Therefore, there is growing interest in combining immune checkpoint blockade with chemotherapy and other treatments to enhance immune checkpoint blockade efficacy. Based on favorable clinical trial results, chemotherapy and immunotherapy combinations have been recently approved by the U.
View Article and Find Full Text PDFNeurotensin receptor 1 (NTR1) is a G protein coupled receptor that is widely expressed throughout the central nervous system where it acts as a neuromodulator. Neurotensin receptors have been implicated in a wide variety of CNS disorders, but despite extensive efforts to develop small molecule ligands there are few reports of such compounds. Herein we describe the optimization of a quinazoline based lead to give (SBI-553), a potent and brain penetrant NTR1 allosteric modulator.
View Article and Find Full Text PDFObesity-associated insulin resistance plays a central role in type 2 diabetes. As such, tyrosine phosphatases that dephosphorylate the insulin receptor (IR) are potential therapeutic targets. The low-molecular-weight protein tyrosine phosphatase (LMPTP) is a proposed IR phosphatase, yet its role in insulin signaling in vivo has not been defined.
View Article and Find Full Text PDFPharmacological treatment for methamphetamine addiction will provide important societal benefits. Neurotensin receptor NTR1 and dopamine receptor distributions coincide in brain areas regulating methamphetamine-associated reward, and neurotensin peptides produce behaviors opposing psychostimulants. Therefore, undesirable methamphetamine-associated activities should be treatable with druggable NTR1 agonists, but no such FDA-approved therapeutics exist.
View Article and Find Full Text PDFPersistent opening of the mitochondrial permeability transition pore (PTP), an inner membrane channel, leads to mitochondrial dysfunction and renders the PTP a therapeutic target for a host of life-threatening diseases. Herein, we report our effort toward identifying small-molecule inhibitors of this target through structure-activity relationship optimization studies, which led to the identification of several potent analogues around the N-phenylbenzamide compound series identified by high-throughput screening. In particular, compound 4 (3-(benzyloxy)-5-chloro-N-(4-(piperidin-1-ylmethyl)phenyl)benzamide) displayed noteworthy inhibitory activity in the mitochondrial swelling assay (EC50 =280 nm), poor-to-very-good physicochemical as well as in vitro pharmacokinetic properties, and conferred very high calcium retention capacity to mitochondria.
View Article and Find Full Text PDFToday's large, public databases of protein-small molecule interaction data are creating important new opportunities for data mining and integration. At the same time, new graphical user interface-based workflow tools offer facile alternatives to custom scripting for informatics and data analysis. Here, we illustrate how the large protein-ligand database BindingDB may be incorporated into KNIME workflows as a step toward the integration of pharmacological data with broader biomolecular analyses.
View Article and Find Full Text PDFThe mitochondrial permeability transition pore (mtPTP) is a Ca(2+) -requiring mega-channel which, under pathological conditions, leads to the deregulated release of Ca(2+) and mitochondrial dysfunction, ultimately resulting in cell death. Although the mtPTP is a potential therapeutic target for many human pathologies, its potential as a drug target is currently unrealized. Herein we describe an optimization effort initiated around hit 1, 5-(3-hydroxyphenyl)-N-(3,4,5-trimethoxyphenyl)isoxazole-3-carboxamide, which was found to possess promising inhibitory activity against mitochondrial swelling (EC50 <0.
View Article and Find Full Text PDFThe neurotensin 1 receptor (NTR1) is an important therapeutic target for a range of disease states including addiction. A high throughput screening campaign, followed by medicinal chemistry optimization, led to the discovery of a non-peptidic β-arrestin biased agonist for NTR1. The lead compound, 2-cyclopropyl-6,7-dimethoxy-4-(4-(2-methoxyphenyl)- piperazin-1-yl)quinazoline, (), exhibits full agonist behavior against NTR1 (EC = 2.
View Article and Find Full Text PDFARTEMIS is a member of the metallo-β-lactamase protein family. ARTEMIS has endonuclease activity at DNA hairpins and at 5'- and 3'-DNA overhangs of duplex DNA, and this endonucleolytic activity is dependent upon DNA-PKcs. There has been uncertainty about whether ARTEMIS also has 5'-exonuclease activity on single-stranded DNA and 5'-overhangs, because this 5'-exonuclease is not dependent upon DNA-PKcs.
View Article and Find Full Text PDFA scaffold-hop program seeking full agonists of the neurotensin-1 (NTR1) receptor identified the probe molecule ML301 (1) and associated analogs, including its naphthyl analog (14) which exhibited similar properties. Compound 1 showed full agonist behavior (79-93%) with an EC50 of 2.0-4.
View Article and Find Full Text PDFA high-throughput screen of the NIH's MLSMR collection of ∼340000 compounds was undertaken to identify compounds that inhibit Plasmodium falciparum glucose-6-phosphate dehydrogenase (PfG6PD). PfG6PD is important for proliferating and propagating P. falciparum and differs structurally and mechanistically from the human orthologue.
View Article and Find Full Text PDFHerein we present the outcome of a high throughput screening (HTS) campaign-based strategy for the rapid identification and optimization of selective and general chemotypes for both kappa (κ) opioid receptor (KOR) activation and inhibition. In this program, we have developed potent antagonists (IC(50) < 120 nM) or agonists of high binding affinity (K(i) < 3 nM). In contrast to many important KOR ligands, the compounds presented here are highly modular, readily synthesized and, in most cases, achiral.
View Article and Find Full Text PDFFatty acid amide hydrolase (FAAH) degrades neuromodulating fatty acid amides including anandamide (endogenous cannabinoid agonist) and oleamide (sleep-inducing lipid) at their sites of action and is intimately involved in their regulation. Herein we report the discovery of a potent, selective, and efficacious class of reversible FAAH inhibitors that produce analgesia in animal models validating a new therapeutic target for pain intervention. Key to the useful inhibitor discovery was the routine implementation of a proteomics-wide selectivity screen against the serine hydrolase superfamily ensuring selectivity for FAAH coupled with systematic in vivo examinations of candidate inhibitors.
View Article and Find Full Text PDFThe design and synthesis of 10-(2-benzoxazolcarbonyl)-DDACTHF (1) as an inhibitor of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase) are reported. Ketone 1 and the corresponding alcohol 13 were evaluated for inhibition of GAR Tfase and AICAR Tfase and the former was found to be a potent inhibitor of recombinant human (rh) GAR Tfase (Ki=600 nM).
View Article and Find Full Text PDFA series of simplified alpha-keto heterocycle, trifluoromethyl ketone, and formyl substituted folate analogues lacking the benzoylglutamate subunit were prepared and examined as potential inhibitors of glycinamide ribonucleotide transformylase (GAR Tfase) and aminoimidazole carboxamide transformylase (AICAR Tfase).
View Article and Find Full Text PDFAn extensive series of CBI analogues of the duocarmycins and CC-1065 exploring substituent effects within the first indole DNA binding subunit is detailed. In general, substitution at the indole C5 position led to cytotoxic potency enhancements that can be >/=1000-fold providing simplified analogues containing a single DNA binding subunit that are more potent (IC(50)=2-3 pM) than CBI-TMI, duocarmycin SA, or CC-1065.
View Article and Find Full Text PDF