In this paper, we demonstrate a multi-parameter fiber sensing system based on stimulated Brillouin scattering in a double-Brillouin peak specialty fiber with enhanced Brillouin gain response. The amplitude level of the second Brillouin gain peak, which originated from the higher-order acoustic modes, has been improved with an approximately similar amplitude level to the first Brillouin gain peak from the fundamental acoustic mode. Compared to other multi-Brillouin peak fibers presented in the literature, the proposed fiber significantly reduces the measured Brillouin frequency shift error, thus improving strain and temperature accuracies.
View Article and Find Full Text PDFIn this paper, we present the results of lab and pilot-scale testing of a continuously enhanced backscattering, or Rayleigh enhanced fiber cable that can improve distributed acoustic sensing performance. In addition, the Rayleigh-enhanced fiber is embedded within a tight buffered cable configuration to withstand and be compatible for field applications. The sensing fiber cable exhibits a Rayleigh enhancement of 13 dB compared to standard silica single-mode fiber while maintaining low attenuation of ≤ 0.
View Article and Find Full Text PDFThis paper presents a novel probabilistic machine learning (PML) framework to estimate the Brillouin frequency shift (BFS) from both Brillouin gain and phase spectra of a vector Brillouin optical time-domain analysis (VBOTDA). The PML framework is used to predict the Brillouin frequency shift (BFS) along the fiber and to assess its predictive uncertainty. We compare the predictions obtained from the proposed PML model with a conventional curve fitting method and evaluate the BFS uncertainty and data processing time for both methods.
View Article and Find Full Text PDFA vibration fiber sensor based on a fiber ring cavity laser and an interferometer based single-mode-multimode-single-mode (SMS) fiber structure is proposed and experimentally demonstrated. The SMS fiber sensor is positioned within the laser cavity, where the ring laser lasing wavelength can be swept to an optimized wavelength using a simple fiber loop design. To obtain a better signal-to-noise ratio, the ring laser lasing wavelength is tuned to the maximum gain region biasing point of the SMS transmission spectrum.
View Article and Find Full Text PDFThis paper presents a method of using femtosecond laser inscribed nanograting as low-loss- and high-temperature-stable in-fiber reflectors. By introducing a pair of nanograting inside the core of a single-mode optical fiber, an intrinsic Fabry-Perot interferometer can be created for high-temperature sensing applications. The morphology of the nanograting inscribed in fiber cores was engineered by tuning the fabrication conditions to achieve a high fringe visibility of 0.
View Article and Find Full Text PDFSapphire is a widely used high-temperature material, and this work presents thorough characterization of all the measurable Raman scattering modes in sapphire and their temperature dependencies. Here, Raman scattering in bulk sapphire rods is measured from room temperature to 1081°C and is illustrated as a method of noncontact temperature measurement. A single-line argon ion laser at 488 nm was used to excite the sapphire rods inside a cylindrical furnace.
View Article and Find Full Text PDFEmbedded sensors capable of operation in extreme environments including high temperatures, high pressures, and highly reducing, oxidizing and/or corrosive environments can make a significant impact on enhanced efficiencies and reduced greenhouse gas emissions of current and future fossil-based power generation systems. Relevant technologies can also be leveraged in a wide range of other applications with similar needs including nuclear power generation, industrial process monitoring and control, and aviation/aerospace. Here we describe a novel approach to embedded sensing under extreme temperature conditions by integration of Au-nanoparticle based plasmonic nanocomposite thin films with optical fibers in an evanescent wave absorption spectroscopy configuration.
View Article and Find Full Text PDFHollow, metal-lined waveguides used as gas sensors based on spontaneous Raman scattering are capable of large angular collection. The collection of light from a large solid angle implies the collection of a large number of waveguide modes. An accurate estimation of the propagation losses for these modes is required to predict the total collected Raman power.
View Article and Find Full Text PDFTo achieve high output power and/or high efficiencies, laser systems are often designed to operate with either high-order or multiorder transverse modes. This comes at the expense of beam quality. Herein, a technique for converting the two lobes of a higher-order (Hermite-Gaussian TEM(10)) beam into two TEM(00) beams is discussed.
View Article and Find Full Text PDFAccurate, real-time measurement of the dilute constituents of a gaseous mixture poses a significant challenge usually relegated to mass spectrometry. Here, spontaneous Raman backscattering is used to detect low pressure molecular gases. Rapid detection of gases in the approximately 100 parts in 10(6) (ppm) range is described.
View Article and Find Full Text PDFSpontaneous gas-phase Raman scattering using a hollow-core photonic bandgap fiber (HC-PBF) for both the gas cell and the Stokes light collector is reported. It was predicted that the HC-PBF configuration would yield several hundred times signal enhancement in Stokes power over a traditional free-space configuration because of increased interaction lengths and large collection angles. Predictions were verified by using nitrogen Stokes signals.
View Article and Find Full Text PDF