The great majority of electronic and optoelectronic devices depend on interfaces between p-type and n-type semiconductors. Finding matching donor-acceptor systems in molecular semiconductors remains a challenging endeavor because structurally compatible molecules may not necessarily be suitable with respect to their optical and electronic properties, and the large exciton binding energy in these materials may favor bound electron-hole pairs rather than free carriers or charge transfer at an interface. Regardless, interfacial charge-transfer exciton states are commonly considered as an intermediate step to achieve exciton dissociation.
View Article and Find Full Text PDFWe present spin-noise spectroscopy measurements on an ensemble of donor-bound electrons in ultrapure GaAs:Si covering temporal dynamics over 6 orders of magnitude from milliseconds to nanoseconds. The spin-noise spectra detected at the donor-bound exciton transition show the multifaceted dynamical regime of the ubiquitous mutual electron and nuclear spin interaction typical for III-V-based semiconductor systems. The experiment distinctly reveals the finite Overhauser shift of an electron spin precession at zero external magnetic field and a second contribution around zero frequency stemming from the electron spin components parallel to the nuclear spin fluctuations.
View Article and Find Full Text PDFWe advance spin noise spectroscopy to the ultimate limit of single spin detection. This technique enables the measurement of the spin dynamic of a single heavy hole localized in a flat (InGa)As quantum dot. Magnetic field and light intensity dependent studies reveal even at low magnetic fields a strong magnetic field dependence of the longitudinal heavy hole spin relaxation time with an extremely long T1 of ≥180 μs at 31 mT and 5 K.
View Article and Find Full Text PDFWe advance all optical spin noise spectroscopy (SNS) in semiconductors to detection bandwidths of several hundred gigahertz by employing a sophisticated scheme of pulse trains from ultrafast laser oscillators as an optical probe. The ultrafast SNS technique avoids the need for optical pumping and enables nearly perturbation free measurements of extremely short spin dephasing times. We apply the technique to highly-n-doped bulk GaAs where magnetic field dependent measurements show unexpected large g-factor fluctuations.
View Article and Find Full Text PDFWe combine the scanning temporal ultrafast delay (STUD) technique with spin noise spectroscopy (SNS), which is based upon below band gap Faraday rotation to investigate the full temporal dynamics of stochastically orientated electron spins in slightly n-doped bulk GaAs. The application of STUD-SNS boosts the common technical bandwidth limitation of the electro-optic conversion in cw-SNS into the several hundred GHz regime. Numerical simulations highlight the strengths and examine the limitations of STUD-SNS.
View Article and Find Full Text PDFIn this Letter, the first spin noise spectroscopy measurements in semiconductor systems of reduced effective dimensionality are reported. The nondemolition measurement technique gives access to the otherwise concealed intrinsic, low temperature electron spin relaxation time of n-doped GaAs (110) quantum wells and to the corresponding low temperature anisotropic spin relaxation. The Brownian motion of the electrons within the spin noise probe laser spot becomes manifest in a modification of the spin noise line width.
View Article and Find Full Text PDF