Nested association mapping (NAM) populations emerged as a multi-parental strategy that combines the high statistical power of biparental linkage mapping with greater allelic richness of association mapping. Several statistical models have been developed for marker-trait associations (MTAs) in genome-wide association studies (GWAS), which ranges from simple to increasingly complex models. These statistical models vary in their performance for detecting real association with the avoidance of false positives and false negatives.
View Article and Find Full Text PDFIntroduction: This study found that wheat () grain can germinate precociously during the maturation phase of grain development, a phenomenon called vivipary that was associated with alpha-amylase induction. Farmers receive severe discounts for grain with low falling number (FN), an indicator that grain contains sufficiently elevated levels of the starch-digesting enzyme alpha-amylase to pose a risk to end-product quality. High grain alpha-amylase can result from: preharvest sprouting (PHS)/germination when mature wheat is rained on before harvest, or from late maturity alpha-amylase (LMA) when grain experiences cool temperatures during the soft dough stage of grain maturation (Zadoks growth stage 85).
View Article and Find Full Text PDFPest attacks on plants can substantially change plants' volatile organic compounds (VOCs) emission profiles. Comparison of VOC emission profiles between non-infected/non-infested and infected/infested plants, as well as resistant and susceptible plant cultivars, may provide cues for a deeper understanding of plant-pest interactions and associated resistance. Furthermore, the identification of biomarkers-specific biogenic VOCs-associated with the resistance can serve as a non-destructive and rapid tool for phenotyping applications.
View Article and Find Full Text PDFHessian fly [ (Say)] is a major pest of wheat ( L.) throughout the United States and in several other countries. A highly effective and economically feasible way to control Hessian fly is with resistant cultivars.
View Article and Find Full Text PDFGenomics and high throughput phenomics have the potential to revolutionize the field of wheat ( L.) breeding. Genomic selection (GS) has been used for predicting various quantitative traits in wheat, especially grain yield.
View Article and Find Full Text PDFGenomic selection (GS) is transforming the field of plant breeding and implementing models that improve prediction accuracy for complex traits is needed. Analytical methods for complex datasets traditionally used in other disciplines represent an opportunity for improving prediction accuracy in GS. Deep learning (DL) is a branch of machine learning (ML) which focuses on densely connected networks using artificial neural networks for training the models.
View Article and Find Full Text PDFis a wild relative of common wheat ( L.) with resistance to f. , the causal agent of stem rust, including the highly virulent race TTKSK (Ug99).
View Article and Find Full Text PDFRecombination affects the fate of alleles in populations by imposing constraints on the reshuffling of genetic information. Understanding the genetic basis of these constraints is critical for manipulating the recombination process to improve the resolution of genetic mapping, and reducing the negative effects of linkage drag and deleterious genetic load in breeding. Using sequence-based genotyping of a wheat nested association mapping (NAM) population of 2,100 recombinant inbred lines created by crossing 29 diverse lines, we mapped QTL affecting the distribution and frequency of 102 000 crossovers (CO).
View Article and Find Full Text PDFStem rust of wheat caused by the fungal pathogen f. sp. historically caused major yield losses of wheat worldwide.
View Article and Find Full Text PDFBackground: The narrow genetic basis of resistance in modern wheat cultivars and the strong selection response of pathogen populations have been responsible for periodic and devastating epidemics of the wheat rust diseases. Characterizing new sources of resistance and incorporating multiple genes into elite cultivars is the most widely accepted current mechanism to achieve durable varietal performance against changes in pathogen virulence. Here, we report a high-density molecular characterization and genome-wide association study (GWAS) of stripe rust and stem rust resistance in 190 Ethiopian bread wheat lines based on phenotypic data from multi-environment field trials and seedling resistance screening experiments.
View Article and Find Full Text PDFGenome-wide association mapping is a powerful tool for dissecting the relationship between phenotypes and genetic variants in diverse populations. With the improved cost efficiency of high-throughput genotyping platforms, association mapping is a desirable method of mining populations for favorable alleles that hold value for crop improvement. Stem rust, caused by the fungus f.
View Article and Find Full Text PDFStripe rust, caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of wheat in Ethiopia.
View Article and Find Full Text PDFWe identified 15 potentially novel loci in addition to previously characterized leaf rust resistance genes from 1032 spring wheat accessions. Targeted AM subset panels were instrumental in revealing interesting loci. Leaf rust is a common disease of wheat, consistently reducing yields in many wheat-growing regions of the world.
View Article and Find Full Text PDFFusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease of wheat and barley that leads to reduced yield and mycotoxin contamination of grain, making it unfit for human consumption. FHB is a global problem, with outbreaks in the United States, Canada, Europe, Asia and South America. In the United States alone, total direct and secondary economic losses from 1993 to 2001 owing to FHB were estimated at $7.
View Article and Find Full Text PDFWheat stem rust, caused by Puccinia graminis f. sp. tritici, can cause severe yield losses on susceptible wheat varieties and cultivars.
View Article and Find Full Text PDFAegilops tauschii, the diploid progenitor of the wheat D genome, is a readily accessible germplasm pool for wheat breeding as genes can be transferred to elite wheat cultivars through direct hybridization followed by backcrossing. Gene transfer and genetic mapping can be integrated by developing mapping populations during backcrossing. Using direct crossing, two genes for resistance to the African stem rust fungus race TTKSK (Ug99), were transferred from the Ae.
View Article and Find Full Text PDFThe cereal cyst nematode Heterodera avenae reduces wheat yields in the Pacific Northwest. Previous evaluations of cultivar resistance had been in controlled environments. Cultivar tolerance had not been evaluated.
View Article and Find Full Text PDFWheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as 'Ug99') race group.
View Article and Find Full Text PDFThe emergence of the highly virulent Ug99 race complex of the stem rust fungus (Puccinia graminis Pers. f. sp.
View Article and Find Full Text PDFThis study reports the discovery and molecular mapping of a resistance gene effective against stem rust races RKQQC and TTKSK (Ug99) derived from Aegilops geniculata (2n = 4x = 28, U(g)U(g)M(g)M(g)). Two populations from the crosses TA5599 (T5DL-5M(g)L·5M(g)S)/TA3809 (ph1b mutant in Chinese Spring background) and TA5599/Lakin were developed and used for genetic mapping to identify markers linked to the resistance gene. Further molecular and cytogenetic characterization resulted in the identification of nine spontaneous recombinants with shortened Ae.
View Article and Find Full Text PDFThe emergence of a new highly virulent race of stem rust (Puccinia graminis tritici), Ug99, rapid evolution of new Ug99 derivative races overcoming resistance of widely deployed genes, and spread towards important wheat growing areas now potentially threaten world food security. Exploiting novel genes effective against Ug99 from wild relatives of wheat is one of the most promising strategies for the protection of the wheat crop. A new source of resistance to Ug99 was identified in the short arm of the Aegilops searsii chromosome 3S(s) by screening wheat- Ae.
View Article and Find Full Text PDFA major quantitative trait locus (QTL), Qfhs.ndsu-3BS, for resistance to Fusarium head blight (FHB) in wheat has been identified and verified by several research groups. The objectives of this study were to construct a fine genetic map of this QTL region and to examine microcolinearity in the QTL region among wheat, rice, and barley.
View Article and Find Full Text PDF