Publications by authors named "Michael O Okpara"

Kaposi's sarcoma-associated herpesvirus (KSHV) is a DNA virus that causes Kaposi's sarcoma, a cancer of endothelial origin. KSHV uses the activity of host molecular chaperones like Hsp70 and Hsp90 for the folding of host and viral proteins required for productive infection. Hsp70 and Hsp90 chaperones form proteostasis networks with several regulatory proteins known as co-chaperones.

View Article and Find Full Text PDF

The central role of the chaperome in maintaining cellular proteostasis has seen numerous viral families evolve to parasitically exploit host chaperones in their life cycle. The HSP90 chaperone protein and its cochaperone Hop have both individually been shown to be essential factors for Kaposi sarcoma-associated herpesvirus (KSHV) lytic replication. Given the fundamental regulatory role that protein-protein interactions (PPIs) play in cellular biology, we reasoned that disrupting the Hop-HSP90 PPI may provide a new host-based target for inhibiting KSHV lytic replication.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent for primary effusion lymphoma (PEL), multicentric Castleman's disease (MCD) and Kaposi's sarcoma (KS). KSHV is one of the oncoviruses that contribute to 1.5 million new infection-related cancer cases annually.

View Article and Find Full Text PDF

Karyopherin beta 1 (Kpnβ1) is the principal nuclear importer of cargo proteins and plays a role in many cellular processes. Its expression is upregulated in cancer and essential for cancer cell viability, thus the identification of its binding partners might help in the discovery of anti-cancer therapeutic targets and cancer biomarkers. Herein, we applied immunoprecipitation coupled to mass spectrometry (IP-MS) to identify Kpnβ1 binding partners in normal and cancer cells.

View Article and Find Full Text PDF

Previous studies have identified increased expression of members of the nuclear transport protein family in cancer cells. Recently, certain nuclear transport proteins have been reported to be secreted by cells and found in the serum. The aims of our study were to investigate the levels of multiple nuclear transport proteins secreted from cancer cells, and to determine their potential as diagnostic markers for cervical and oesophageal cancer.

View Article and Find Full Text PDF