Publications by authors named "Michael O Fogwill"

A method utilizing turbulent flow to perform ultrafast separations and screen chiral compounds in supercritical fluid chromatography (SFC) is described. Carbon dioxide at high flow rates (up to 4.0 mL/min) is delivered into gas chromatography (GC) open-tubular columns (OTC, 0.

View Article and Find Full Text PDF

A novel chromatographic separation method is introduced which employs water (saturated with CO(2)) as a stationary phase and CO(2) (saturated with water) as a mobile phase. Since water and CO(2) have little miscibility, conditions can be attained that create a stationary phase of water lining the inside of an uncoated stainless steel capillary. Because altering temperature and pressure can change both the density of the mobile phase and the polarity of the stationary phase, these experimental parameters offer good flexibility for optimizing separations and allow for different gradient programmed separation options.

View Article and Find Full Text PDF

A novel method of increasing the elution strength in subcritical water chromatography (SWC) by adding CO2 to the water mobile phase is presented. Since the polarity of water reduces dramatically with increasing temperature, this property is used in SWC to create an isocratic mobile phase with tunable elutropic strength in reversed-phase separations. Unfortunately, thermal stability of the stationary phase dictates the upper temperature limit and therefore also the minimum available mobile phase polarity.

View Article and Find Full Text PDF

A novel resistive heating method is presented for subcritical water chromatography (SWC) that provides higher column heating rates than those conventionally obtained from temperature-programmed gas chromatography (GC) convection ovens. Since the polarity of water reduces dramatically with increasing temperature, SWC employs column heating to achieve gradient elution. As such, the rate at which the mobile phase is heated directly impacts the magnitude of such gradients applied in SWC.

View Article and Find Full Text PDF