HO-oxidized glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalytic cysteine residues (C(SH) undergo rapid S-glutathionylation. Restoration of the enzyme activity is accomplished by thiol/disulfide S2 displacement (directly or enzymatically) forming glutathione disulfide (G(SS)G) and active enzyme, a process that should be facile as C(SH) reside on the subunit surface. As S-glutathionylated GAPDH accumulates following ischemic and/or oxidative stress, in vitro/silico approaches have been employed to address this paradox.
View Article and Find Full Text PDFOxidation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by reactive oxygen species such as HO activate pleiotropic signaling pathways is associated with pathophysiological cell fate decisions. Oxidized GAPDH binds chaperone proteins with translocation of the complex to the nucleus and mitochondria initiating autophagy and cellular apoptosis. In this study, we establish the mechanism by which HO-oxidized GAPDH subunits undergo a subunit conformational rearrangement.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) is a main drug target, and its inhibitors have demonstrated functionality in the symptomatic treatment of Alzheimer's disease (AD). In this study, a series of novel AChE inhibitors were designed and their inhibitory activity was evaluated with 2D quantitative structure-activity relationship (QSAR) studies using a training set of 20 known compounds for which IC₅₀ values had previously been determined. The QSAR model was calculated based on seven unique descriptors.
View Article and Find Full Text PDFAmyloid binding alcohol dehydrogenase, a mitochondrial protein, is a cofactor facilitating amyloid-β peptide (Aβ) induced cell stress. Antagonizing Aβ-ABAD interaction protects against aberrant mitochondrial and neuronal function and improves learning memory in the Alzheimer's disease mouse model. Therefore, it offers a potential target for Alzheimer's drug design, by identifying potential inhibitors of Aβ-ABAD interaction.
View Article and Find Full Text PDFThe azetidinone LY307174 (1) was identified as a screening lead for the vasopressin V1a receptor (IC50 45 nM at the human V1a receptor) based on molecular similarity to ketoconazole (2), a known antagonist of the luteinizing hormone releasing hormone receptor. Structure-activity relationships for the series were explored to optimize receptor affinity and pharmacokinetic properties, resulting in compounds with Ki values <1nM and brain levels after oral dosing approximately 100-fold higher than receptor affinities.
View Article and Find Full Text PDFIn the AD brain, there are elevated amounts of soluble and insoluble Abeta peptides which enhance the expression of membrane bound and soluble receptor for advanced glycation end products (RAGE). The binding of soluble Abeta to soluble RAGE inhibits further aggregation of Abeta peptides, while membrane bound RAGE-Abeta interactions elicit activation of the NF-kappaB transcription factor promoting sustained chronic neuroinflammation. Atomic force microscopy observations demonstrated that the N-terminal domain of RAGE, by interacting with Abeta, is a powerful inhibitor of Abeta polymerization even at prolonged periods of incubation.
View Article and Find Full Text PDFIn this paper we explore the potential functional role of the A beta peptides in the context of Alzheimer's disease (AD). We begin by defining the morphology of the amyloid deposits in relation to surrounding glial cells and, more importantly, in relation to the brain vasculature. Amyloid accumulation in the brain's microvasculature causes disturbances in the blood-brain barrier (BBB), and in larger arteries, impairment in control of regional cerebral blood flow due to myocyte degeneration.
View Article and Find Full Text PDF