Publications by authors named "Michael Nix"

Purpose: We have built a novel AI-driven QA method called AutoConfidence (ACo), to estimate segmentation confidence on a per-voxel basis without gold standard segmentations, enabling robust, efficient review of automated segmentation (AS). We have demonstrated this method in brain OAR AS on MRI, using internal and external (third-party) AS models.

Methods: Thirty-two retrospectives, MRI planned, glioma cases were randomly selected from a local clinical cohort for ACo training.

View Article and Find Full Text PDF

Purpose: To establish the clinical applicability of deep-learning organ-at-risk autocontouring models (DL-AC) for brain radiotherapy. The dosimetric impact of contour editing, prior to model training, on performance was evaluated for both CT and MRI-based models. The correlation between geometric and dosimetric measures was also investigated to establish whether dosimetric assessment is required for clinical validation.

View Article and Find Full Text PDF

Background And Objective: In radiotherapy treatment planning, respiration-induced motion introduces uncertainty that, if not appropriately considered, could result in dose delivery problems. 4D cone-beam computed tomography (4D-CBCT) has been developed to provide imaging guidance by reconstructing a pseudo-motion sequence of CBCT volumes through binning projection data into breathing phases. However, it suffers from artefacts and erroneously characterizes the averaged breathing motion.

View Article and Find Full Text PDF

Deep-learning auto-contouring (DL-AC) promises standardisation of organ-at-risk (OAR) contouring, enhancing quality and improving efficiency in radiotherapy. No commercial models exist for OAR contouring based on brain magnetic resonance imaging (MRI). We trained and evaluated computed tomography (CT) and MRI OAR autosegmentation models in RayStation.

View Article and Find Full Text PDF

(1) Background: The STRIDeR (Support Tool for Re-Irradiation Decisions guided by Radiobiology) planning pathway aims to facilitate anatomically appropriate and radiobiologically meaningful re-irradiation (reRT). This work evaluated the STRIDeR pathway for robustness compared to a more conservative manual pathway. (2) Methods: For ten high-grade glioma reRT patient cases, uncertainties were applied and cumulative doses re-summed.

View Article and Find Full Text PDF

Objective: This article describes the experience in the planning and development of a special delivery unit (SDU) at our free-standing children's hospital in Austin, Texas.

Study Design: Description of various aspects of the development of the SDU. In addition, telephone surveys were obtained from five other institutions regarding the planning and current status of their SDUs.

View Article and Find Full Text PDF

Background: The STRIDeR (Support Tool for Re-Irradiation Decisions guided by Radiobiology) project aims to create a clinically viable re-irradiation planning pathway within a commercial treatment planning system (TPS). Such a pathway should account for previously delivered dose, voxel-by-voxel, taking fractionation effects, tissue recovery and anatomical changes into account. This work presents the workflow and technical solutions in the STRIDeR pathway.

View Article and Find Full Text PDF

Deformable image registration (DIR) can be used to track cardiac motion. Conventional DIR algorithms aim to establish a dense and non-linear correspondence between independent pairs of images. They are, nevertheless, computationally intensive and do not consider temporal dependencies to regulate the estimated motion in a cardiac cycle.

View Article and Find Full Text PDF

(1) Purpose: We analysed overall survival (OS) rates following radiotherapy (RT) and chemo-RT of locally-advanced non-small cell lung cancer (LA-NSCLC) to investigate whether tumour repopulation varies with treatment-type, and to further characterise the low / ratio found in a previous study. (2) Materials and methods: Our dataset comprised 2-year OS rates for 4866 NSCLC patients (90.5% stage IIIA/B) belonging to 51 cohorts treated with definitive RT, sequential chemo-RT (sCRT) or concurrent chemo-RT (cCRT) given in doses-per-fraction ≤3 Gy over 16-60 days.

View Article and Find Full Text PDF

Objectives: Glioblastoma (GBM) radiotherapy (RT) target delineation requires MRI, ideally concurrent with CT simulation (pre-RT MRI). Due to limited MRI availability, <72 h post-surgery MRI is commonly used instead. Whilst previous investigations assessed volumetric differences between post-surgical and pre-RT delineations, dosimetric impact remains unknown.

View Article and Find Full Text PDF

Background And Purpose: Magnetic Resonance Imaging (MRI) exhibits scanner dependent contrast, which limits generalisability of radiomics and machine-learning for radiation oncology. Current deep-learning harmonisation requires paired data, retraining for new scanners and often suffers from geometry-shift which alters anatomical information. The aim of this study was to investigate style-blind auto-encoders for MRI harmonisation to accommodate unpaired training data, avoid geometry-shift and harmonise data from previously unseen scanners.

View Article and Find Full Text PDF

Objectives: Radiomics is a promising avenue in non-invasive characterisation of diffuse glioma. Clinical translation is hampered by lack of reproducibility across centres and difficulty in standardising image intensity in MRI datasets. The study aim was to perform a systematic review of different methods of MRI intensity standardisation prior to radiomic feature extraction.

View Article and Find Full Text PDF

Introduction: Limited evidence exists showing the benefit of magnetic resonance (MR)-only radiotherapy treatment planning for anal and rectal cancers. This study aims to assess the impact of MR-only planning on target volumes (TVs) and treatment plan doses to organs at risks (OARs) for anal and rectal cancers versus a computed tomography (CT)-only pathway.

Materials And Methods: Forty-six patients (29 rectum and 17 anus) undergoing preoperative or radical external beam radiotherapy received CT and T2 MR simulation.

View Article and Find Full Text PDF

Background And Purpose: Magnetic resonance (MR)-only treatment pathways require either the MR-simulation or synthetic-computed tomography (sCT) as an alternative reference image for cone beam computed tomography (CBCT) patient position verification. This study assessed whether using T2 MR or sCT as CBCT reference images introduces systematic registration errors as compared to CT for anal and rectal cancers.

Materials And Methods: A total of 32 patients (18 rectum,14 anus) received pre-treatment CT- and T2 MR- simulation.

View Article and Find Full Text PDF

Background And Purpose: Comprehensive dosimetric analysis is required prior to the clinical implementation of pelvic MR-only sites, other than prostate, due to the limited number of site specific synthetic-CT (sCT) dosimetric assessments in the literature. This study aims to provide a comprehensive assessment of a deep learning-based, conditional generative adversarial network (cGAN) model for a large ano-rectal cancer cohort. The following challenges were investigated; T2-SPACE MR sequences, patient data from multiple centres and the impact of sex and cancer site on sCT quality.

View Article and Find Full Text PDF

A novel full-system test (FST) phantom and method have been developed to demonstrate and quality assure the geometric accuracy of image co-registration and overall shot delivery in the context of SRS using Gamma Knife® Icon™. The method uses Vernier scale bars to achieve sub-voxel precision co-registration measurements and pin-located radiochromic films to determine overall shot delivery precision. Validation tests demonstrated that artificially applied registration errors of < 0.

View Article and Find Full Text PDF

Objective: To estimate the effects of an inpatient initiative to decrease opioid use among women admitted to labor and delivery.

Methods: We created a multimodal pain power plan with standard therapeutic postpartum activity goals rather than pain goals, tiered order sets with scheduled administration of nonsteroidal antiinflammatory drugs (NSAIDs), and embedded changes into the electronic health record. Before the multimodal pain power plan launch, pain was assessed on a 10-point scale; women received NSAIDs for pain levels of 3 or less and opioids for pain levels higher than 3.

View Article and Find Full Text PDF

Purpose: To analyse changes in 2-year overall survival (OS) with radiotherapy (RT) dose, dose-per-fraction, treatment duration and chemotherapy use, in data compiled from prospective trials of RT and chemo-RT (CRT) for locally-advanced non-small cell lung cancer (LA-NSCLC).

Material And Methods: OS data was analysed for 6957 patients treated on 68 trial arms (21 RT-only, 27 sequential CRT, 20 concurrent CRT) delivering doses-per-fraction ≤4.0 Gy.

View Article and Find Full Text PDF

Background: Head and neck MR-CT deformable image registration (DIR) for radiotherapy planning is hindered by the lack of both ground-truth and per-patient accuracy assessment methods. This study assesses novel post-registration reference-free error assessment algorithms, based on local rigid re-registration of native and pseudomodality images.

Methods: Head and neck MR obtained in and out of the treatment position underwent DIR to planning CT.

View Article and Find Full Text PDF

We report the first results of ab initio multiconfigurational Ehrenfest simulations of pyrrole photodynamics. We note that, in addition to the two intersections of 1(1)A2 and 1(1)B1 states with the ground state 1(1)A1, which are known to be responsible for N-H bond fission, another intersection between the 1(2)A2 and 1(2)B1 states of the resulting molecular radical becomes important after the departure of the H atom. This intersection, which is effectively between the two lowest electronic states of the pyrrolyl radical, may play a significant role in explaining the branching ratio between the two states observed experimentally.

View Article and Find Full Text PDF

We report the first low-energy collisional-induced dissociation studies of the X(-)·arginine (X(-) = F(-), Cl(-), Br(-), I(-), NO(3)(-), ClO(3)(-)) series of clusters to investigate the novel phenomenom of anion-induced zwitterion formation in a gas-phase amino acid. Fragmentation of the small halide ion clusters (F(-)·arginine and Cl(-)·arginine) is dominated by deprotonation of the arginine, whereas the major fragmentation channel for the largest ion clusters (I(-)·arginine and ClO(3)(-)·arginine) corresponds to simple cluster fission into the ion and neutral molecule. However, the fragmentation profiles of Br(-)·arginine and NO(3)(-)·arginine, display distinctive features that are consistent with the presence of the zwitterionic form of the amino acid in these clusters.

View Article and Find Full Text PDF

Linear arrays of hydrogen bonds are useful for the reversible assembly of "stimuli-responsive" supramolecular materials. There is thus an ongoing requirement for easy-to-synthesise motifs that are capable of presenting hydrogen-bonding functionality in a predictable manner, such that high-affinity and high-fidelity recognition occurs. The design of linear arrays is made challenging as a consequence of their ability to adopt multiple conformational and tautomeric configurations; with each additional hydrogen-bonding heteroatom added to an array, the available tautomeric and conformational space increases and it can be difficult to anticipate where unproductive conformers/tautomers will arise.

View Article and Find Full Text PDF

Low-energy collision induced dissociation has been used to investigate the structure and stability of microsolvated clusters of the prototypical, aprotic multiply charged anion, Pt(CN)(4)(2-), i.e. Pt(CN)(4)(2-)·(H(2)O)(n) n = 1-4, Pt(CN)(4)(2-)·(MeCN)(m) m =1, 2, and Pt(CN)(4)(2-)·(H(2)O)(3)·MeCN.

View Article and Find Full Text PDF

We report the synthesis of the phosphohistidine analogue, Fmoc-4-diethylphosphonotriazolylalanine 5 and its incorporation into peptides. Our synthesis of 5 has enabled us to demonstrate that the analogue is compatible with Fmoc-solid phase peptide synthesis (SPPS) conditions. Standard cleavage conditions yield the diethyl phosphonate-protected peptide, however this can be subsequently deprotected using trimethylsilyl bromide to yield the free phosphonic acid-containing peptides.

View Article and Find Full Text PDF

The conformational preferences of the prototypical anionic monosaccharide (methyl 2-O-sulfo-α-L-iduronate) have been studied at various computational levels to investigate the energetic variation of 17 subconformers associated with the (4)C(1), (2)S(0), (5)S(1), and (1)C(4) ring conformers. These calculations include the first fully optimized MP2 calculations that have been performed for an anionic sugar system, and therefore allow an assessment of the performance of a group of DFT functionals (B3LYP, PW91PW91, and M05-2X) for treating the noncovalent dispersion and anomeric effects that are present in this system. We find that the recently developed M05-2X functional of Truhlar and co-workers [Y.

View Article and Find Full Text PDF