Publications by authors named "Michael Nitabach"

Insects adapt their response to stimuli, such as odours, according to their pairing with positive or negative reinforcements, such as sugar or shock. Recent electrophysiological and imaging findings in allow detailed examination of the neural mechanisms supporting the acquisition, forgetting, and assimilation of memories. We propose that this data can be explained by the combination of a dopaminergic plasticity rule that supports a variety of synaptic strength change phenomena, and a circuit structure (derived from neuroanatomy) between dopaminergic and output neurons that creates different roles for specific neurons.

View Article and Find Full Text PDF

Feeding decisions are fundamental to survival, and decision making is often disrupted in disease. Here, we show that neural activity in a small population of neurons projecting to the fan-shaped body higher-order central brain region of Drosophila represents food choice during sensory conflict. We found that food deprived flies made tradeoffs between appetitive and aversive values of food.

View Article and Find Full Text PDF

Color detection is used by animals of diverse phyla to navigate colorful natural environments and is thought to require evolutionarily conserved opsin photoreceptor genes. We report that roundworms can discriminate between colors despite the fact that they lack eyes and opsins. Specifically, we found that white light guides foraging decisions away from a blue-pigment toxin secreted by harmful bacteria.

View Article and Find Full Text PDF

Animals form and update learned associations between otherwise neutral sensory cues and aversive outcomes (i.e., punishment) to predict and avoid danger in changing environments.

View Article and Find Full Text PDF

Presynaptic Ca appears to play multiple roles in synaptic development and physiology. We examined the effect of buffering presynaptic Ca by expressing parvalbumin (PV) in Drosophila neurons, which do not normally express PV. The studies were performed on the identified Ib terminal that innervates muscle fiber 5.

View Article and Find Full Text PDF

Circadian rhythms refer to biologic processes that oscillate with an approximate 24-h period. These rhythms direct nearly all aspects of animal behavior and physiology. The aim of our study was to determine if Toll-like receptor (TLR) expression and responsiveness exhibit time-of-day dependent differences.

View Article and Find Full Text PDF

Today, we understand peptide transmitters to be signaling molecules that modulate neural activity. However, in 1982 little was known about neuropeptides and their role in neural communication. The influential 1982 paper by Jan and Jan reported definitive evidence that a presynaptically released neuropeptide evokes postsynaptic responses in an identified cholinergic synapse, thereby fueling a new era in neuroscience.

View Article and Find Full Text PDF

Genome biology approaches have made enormous contributions to our understanding of biological rhythms, particularly in identifying outputs of the clock, including RNAs, proteins, and metabolites, whose abundance oscillates throughout the day. These methods hold significant promise for future discovery, particularly when combined with computational modeling. However, genome-scale experiments are costly and laborious, yielding "big data" that are conceptually and statistically difficult to analyze.

View Article and Find Full Text PDF

Animals execute one particular behavior among many others in a context-dependent manner, yet the mechanisms underlying such behavioral choice remain poorly understood. Here we studied how two fundamental behaviors, sex and sleep, interact at genetic and neuronal levels in Drosophila. We show that an increased need for sleep inhibits male sexual behavior by decreasing the activity of the male-specific P1 neurons that coexpress the sex determination genes fru and dsx, but does not affect female sexual behavior.

View Article and Find Full Text PDF

The mechanisms by which clock neurons in the Drosophila brain confer an ∼24-hr rhythm onto locomotor activity are unclear, but involve the neuropeptide diuretic hormone 44 (DH44), an ortholog of corticotropin-releasing factor. Here we identified DH44 receptor 1 as the relevant receptor for rest:activity rhythms and mapped its site of action to hugin-expressing neurons in the subesophageal zone (SEZ). We traced a circuit that extends from Dh44-expressing neurons in the pars intercerebralis (PI) through hugin+ SEZ neurons to the ventral nerve cord.

View Article and Find Full Text PDF

Multisensory integration is a neural process by which signals from two or more distinct sensory channels are simultaneously processed to form a more coherent representation of the environment. Multisensory integration, especially when combined with a survey of internal states, provides selective advantages for animals navigating complex environments. Despite appreciation of the importance of multisensory integration in behavior, the underlying molecular and cellular mechanisms remain poorly understood.

View Article and Find Full Text PDF

Neuronal circadian oscillators in the mammalian and brain express a circadian clock comprised of interlocking gene transcription feedback loops. The genetic clock regulates the membrane electrical activity by poorly understood signaling pathways to generate a circadian pattern of action potential firing. During the day, Na channels contribute an excitatory drive for the spontaneous activity of circadian clock neurons.

View Article and Find Full Text PDF

Little is known about how animals integrate multiple sensory inputs in natural environments to balance avoidance of danger with approach to things of value. Furthermore, the mechanistic link between internal physiological state and threat-reward decision making remains poorly understood. Here we confronted C.

View Article and Find Full Text PDF

Unlabelled: Body temperature exhibits rhythmic fluctuations over a 24 h period (Refinetti and Menaker, 1992) and decreases during the night, which is associated with sleep initiation (Gilbert et al., 2004; Kräuchi, 2007a,b). However, the underlying mechanism of this temperature decrease is largely unknown.

View Article and Find Full Text PDF

Most sense organs of arthropods are ensconced in small exoskeletal compartments that hinder direct access to plasma membranes. We have developed a method for exposing live sensory and supporting cells in such structures. The technique uses a viscous light cured resin to embed and support the structure, which is then sliced with a sharp blade.

View Article and Find Full Text PDF
Article Synopsis
  • Lateral inhibition in the nervous system enhances the detection of important visual and auditory features, but the role of this mechanism in olfactory systems, especially with odor detection while navigating, is less understood.
  • In a study with fruit flies (Drosophila melanogaster), researchers applied high-intensity odor pulses to measure how olfactory sensory neurons (OSNs) respond to these stimuli.
  • The findings reveal that two types of inhibitory GABA receptors sharpen the electrical responses of OSNs and influence how flies behave after the odor stops, underscoring the significance of contrast enhancement in navigating by smell.
View Article and Find Full Text PDF

The Drosophila mushroom body (MB) is an associative learning network that is important for the control of sleep. We have recently identified particular intrinsic MB Kenyon cell (KC) classes that regulate sleep through synaptic activation of particular MB output neurons (MBONs) whose axons convey sleep control signals out of the MB to downstream target regions. Specifically, we found that sleep-promoting KCs increase sleep by preferentially activating cholinergic sleep-promoting MBONs, while wake-promoting KCs decrease sleep by preferentially activating glutamatergic wake-promoting MBONs.

View Article and Find Full Text PDF

The Drosophila mushroom body (MB) is a key associative memory center that has also been implicated in the control of sleep. However, the identity of MB neurons underlying homeostatic sleep regulation, as well as the types of sleep signals generated by specific classes of MB neurons, has remained poorly understood. We recently identified two MB output neuron (MBON) classes whose axons convey sleep control signals from the MB to converge in the same downstream target region: a cholinergic sleep-promoting MBON class and a glutamatergic wake-promoting MBON class.

View Article and Find Full Text PDF

In August 2014, an international group of researchers gathered for 5 days at the Lorentz Center in Leiden, The Netherlands, to explore the technical and conceptual issues associated with the analysis of G protein-coupled receptor functions utilizing information from crystal structure models to the use of model organisms. This collection of review articles evolved from the 5-day meeting, with brief presentations and structured discussion periods that were designed to identify key questions remaining in understanding G protein-coupled receptor function and to propose novel strategies by integrating scientific disciplines to guide future research.

View Article and Find Full Text PDF

Complex animal behaviors are built from dynamical relationships between sensory inputs, neuronal activity, and motor outputs in patterns with strategic value. Connecting these patterns illuminates how nervous systems compute behavior. Here, we study Drosophila larva navigation up temperature gradients toward preferred temperatures (positive thermotaxis).

View Article and Find Full Text PDF

Animals discriminate stimuli, learn their predictive value and use this knowledge to modify their behavior. In Drosophila, the mushroom body (MB) plays a key role in these processes. Sensory stimuli are sparsely represented by ∼2000 Kenyon cells, which converge onto 34 output neurons (MBONs) of 21 types.

View Article and Find Full Text PDF

Background: Imbalances in amount and timing of sleep are harmful to physical and mental health. Therefore, the study of the underlying mechanisms is of great biological importance. Proper timing and amount of sleep are regulated by both the circadian clock and homeostatic sleep drive.

View Article and Find Full Text PDF

Members of the class B1 family of G-protein coupled receptors (GPCRs) whose ligands are neuropeptides have been implicated in regulation of circadian rhythms and sleep in diverse metazoan clades. This review discusses the cellular and molecular mechanisms by which class B1 GPCRs, especially the mammalian VPAC2 receptor and its functional homologue PDFR in Drosophila and C. elegans, regulate arousal and daily rhythms of sleep and wake.

View Article and Find Full Text PDF