Objective: To determine the role of olfactory function in patients with glioblastoma multiforme (GBM) as a prognostic clinical measure.
Methods: In a prospective case-control study, olfactory testing was performed in 73 patients with primary GBM at baseline during first-line treatment and at later follow-ups. An age-matched control cohort consisted of 49 patients with neurologic diseases, excluding those known to affect olfactory function per se.
Background: We evaluated patterns of tumor growth in patients with newly diagnosed MGMT-non-methylated glioblastoma who were assigned to undergo radiotherapy in conjunction with bevacizumab/irinotecan (BEV/IRI) or standard temozolomide (TMZ) within the randomized phase II GLARIUS trial.
Methods: In 142 patients (94 BEV/IRI, 48 TMZ), we reviewed magnetic resonance imaging scans at baseline and first tumor recurrence. Based on contrast-enhanced T1-weighted and fluid-attenuated inversion recovery images, we assessed tumor growth patterns and tumor invasiveness.
Background: The GLARIUS trial, which investigated the efficacy of bevacizumab (BEV)/irinotecan (IRI) compared with standard temozolomide in the first-line therapy of O6-methylguanine-DNA methyltransferase (MGMT)-nonmethylated glioblastoma, showed that progression-free survival was significantly prolonged by BEV/IRI, while overall survival was similar in both arms. The present report focuses on quality of life (QoL) and Karnofsky performance score (KPS) during the whole course of the disease.
Methods: Patients (n = 170) received standard radiotherapy and were randomized (2:1) for BEV/IRI or standard temozolomide.
Purpose: The adequate second-line therapy of patients with glioblastoma (GBM) is a matter of ongoing debate. This particularly applies to patients with a non-methylated MGMT promotor who are known to have a poor response to alkylating chemotherapy. In some countries, antiangiogenic therapy with BEV is applied as second-line therapy, and in others nitrosourea therapy is second-line choice.
View Article and Find Full Text PDFPurpose: Dovitinib (TKI258) is an oral multi-tyrosine kinase inhibitor of FGFR, VEGFR, PDGFR β, and c-Kit. Since dovitinib is able to cross the blood-brain barrier and targets brain tumor-relevant pathways, we conducted a phase I trial to demonstrate its safety in recurrent glioblastoma (GBM).
Patients And Methods: Patients with first or second GBM recurrence started treatment with the maximal tolerated dose (MTD) previously established in systemic cancer patients (500 mg/d, 5 days on/2 days off).
Large demyelinating inflammatory central nervous system (CNS) lesions may present with contrast enhancement on magnetic resonance imaging and may mimic CNS tumors such as glioma. In ambiguous cases, new diagnostic tools that may be helpful for distinguishing between demyelinating inflammatory and neoplastic CNS lesions are required. The current study presents the case of a patient with a large contrast-enhanced frontal brain lesion, who was initially diagnosed with tumefactive multiple sclerosis.
View Article and Find Full Text PDFPurpose: Pseudoprogression (PsP) is characterized by therapy-associated but not tumor growth-associated increases of contrast-enhancing glioblastoma lesions on MRI. Although typically occurring during the first 3 months after radiochemotherapy, PsP may occur later in the course of the disease and may then be particularly difficult to distinguish from true tumor progression. We explored PET using O-(2-[(18)F]fluoroethyl)-L-tyrosine ((18)F-FET-PET) to approach the diagnostic dilemma.
View Article and Find Full Text PDFBackground: After the failure of radiotherapy and temozolomide, there is no established standard therapy for patients with recurrent glioblastoma (GBM). Based on the promising data of a previous trial (NOA-01) for primary GBM and some retrospective case series for GBM recurrence, the combination of nimustine and teniposide (VM26) was commonly used in this setting. When nimustine was no longer available in Europe, we switched to intrvaveneous carmustine (BCNU).
View Article and Find Full Text PDFBackground: Revascularization is an adaptive repair mechanism that restores blood flow to undersupplied ischemic tissue. Nitric oxide plays an important role in this process. Whether dietary nitrate, serially reduced to nitrite by commensal bacteria in the oral cavity and subsequently to nitric oxide and other nitrogen oxides, enhances ischemia-induced remodeling of the vascular network is not known.
View Article and Find Full Text PDF