Heterozygous loss-of-function mutations in the progranulin gene (GRN) are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the Grn mouse model has not been characterized completely.
View Article and Find Full Text PDFHeterozygous GRN (progranulin) mutations cause frontotemporal dementia (FTD) due to haploinsufficiency, and increasing progranulin levels is a major therapeutic goal. Several microRNAs, including miR-29b, negatively regulate progranulin protein levels. Antisense oligonucleotides (ASOs) are emerging as a promising therapeutic modality for neurological diseases, but strategies for increasing target protein levels are limited.
View Article and Find Full Text PDFHeterozygous loss-of-function mutations in the progranulin gene () are a major cause of frontotemporal dementia due to progranulin haploinsufficiency; complete deficiency of progranulin causes neuronal ceroid lipofuscinosis. Several progranulin-deficient mouse models have been generated, including both knockout mice and knockin mice harboring a common patient mutation (R493X). However, the mouse model has not been characterized completely.
View Article and Find Full Text PDFA common cause of frontotemporal dementia (FTD) are nonsense mutations in the progranulin (GRN) gene. Because nonsense mutations activate the nonsense-mediated RNA decay (NMD) pathway, we sought to inhibit this RNA turnover pathway as a means to increase progranulin levels. Using a knock-in mouse model harboring a common patient mutation, we tested whether either pharmacological or genetic inhibition of NMD upregulates progranulin in these GrnR493X mice.
View Article and Find Full Text PDFThe geroscience hypothesis states that a therapy that prevents the underlying aging process should prevent multiple aging related diseases. The mTOR (mechanistic target of rapamycin)/insulin and NAD+ (nicotinamide adenine dinucleotide) pathways are two of the most validated aging pathways. Yet, it's largely unclear how they might talk to each other in aging.
View Article and Find Full Text PDFCancer-related cognitive impairment (CRCI) is a major neurotoxicity affecting more than 50% of cancer survivors. The underpinning mechanisms are mostly unknown, and there are no FDA-approved interventions. Sphingolipidomic analysis of mouse prefrontal cortex and hippocampus, key sites of cognitive function, revealed that cisplatin increased levels of the potent signaling molecule sphingosine-1-phosphate (S1P) and led to cognitive impairment.
View Article and Find Full Text PDFObesity-related metabolic dysregulation causes mild cognitive impairment and increased risk for dementia. We used an LDLR-deficient C57BL/6J mouse model (LDLRKO) to investigate whether adropin, a neuropeptide linked to neurodegenerative diseases, improves cognitive function in situations of metabolic dysregulation. Adropin transgenic mice (AdrTG) were crossed with LDLRKO; male and female progeny were fed a high fat diet for 3-months.
View Article and Find Full Text PDFThe neural functions of adropin, a secreted peptide highly expressed in the brain, have not been investigated. In humans, adropin is highly expressed in astrocytes and peaks during critical postnatal periods of brain development. Gene enrichment analysis of transcripts correlating with adropin expression suggests processes relevant to aging-related neurodegenerative diseases that vary with age and dementia state, possibly indicating survivor bias.
View Article and Find Full Text PDFRSC Med Chem
August 2021
Somatostatin receptor-4 (SST) is highly expressed in brain regions affiliated with learning and memory. SST agonist treatment may act to mitigate Alzheimer's disease (AD) pathology. An integrated approach to SST agonist lead optimization is presented herein.
View Article and Find Full Text PDFBackground: Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A adenosine receptor (AAR) can provide antiinflammatory and neuroprotective effects.
View Article and Find Full Text PDFBackground And Objective: A recent study identified progranulin as a candidate biomarker for frailty, based on gene expression databases. In the present study, we investigated associations between serum progranulin levels and frailty in a population-based sample of late middle-age and older adults.
Methods: We utilized a cohort study that included 358 African Americans (baseline ages 49-65).
The micropeptide adropin encoded by the clock-controlled energy homeostasis-associated gene is implicated in the regulation of glucose metabolism. However, its links to rhythms of nutrient intake, energy balance, and metabolic control remain poorly defined. Using surveys of Gene Expression Omnibus data sets, we confirm that fasting suppresses liver adropin expression in lean C57BL/6J (B6) mice.
View Article and Find Full Text PDFResearch on intranasal delivery of drugs, peptides, and proteins has grown over the past decade as an alternate way to deliver substrates to the brain. Recent work has shown intranasal (INL) delivery of insulin improves memory and cognition in healthy subjects as well as patients with Alzheimer's disease (AD) and in AD mouse models. However, the molecular mechanism(s) for the beneficial effect of insulin on memory are still unclear.
View Article and Find Full Text PDFAlzheimer's disease currently lacks treatment options that effectively reverse the biological/anatomical pathology and cognitive deficits associated with the disease. Loss of function of the nuclear receptor REV-ERB is associated with reduced cognitive function in mouse models. The effect of enhanced REV-ERB activity on cognitive function has not been examined.
View Article and Find Full Text PDFMetformin is used for the treatment of insulin resistant diabetes. Diabetics are at an increased risk of developing dementia. Recent epidemiological studies suggest that metformin treatment prevents cognitive decline in diabetics.
View Article and Find Full Text PDFTraumatic brain injury (TBI) has many long-term consequences, including impairment in memory and changes in mood. Glycogen synthase kinase 3β (GSK-3β) in its phosphorylated form (p-GSK-3β) is considered to be a major contributor to memory problems that occur post-TBI. We have developed an antisense that targets the GSK-3β (AO) gene.
View Article and Find Full Text PDFGlycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. We have previously shown that an antisense oligonucleotide directed at the Tyr 216 site on GSK-3β (GAO) when injected centrally can decrease GSK-3β levels, improve learning and memory, and decrease oxidative stress. In addition, we showed that GAO can cross the blood-brain barrier.
View Article and Find Full Text PDFOxidative damage is one of the hallmarks of the aging process. The current study evaluated effects of two proprietary antioxidant-based ingredients, rosemary extract and spearmint extract containing carnosic acid and rosmarinic acid, respectively, on learning and memory in the SAMP8 mouse model of accelerated aging. The two rosemary extracts contained carnosic acid (60% or 10% carnosic acid) and one spearmint extract contained 5% rosmarinic acid.
View Article and Find Full Text PDFIntranasal insulin has shown efficacy in patients with Alzheimer's disease (AD), but there are no preclinical studies determining whether or how it reaches the brain. Here, we showed that insulin applied at the level of the cribriform plate via the nasal route quickly distributed throughout the brain and reversed learning and memory deficits in an AD mouse model. Intranasal insulin entered the blood stream poorly and had no peripheral metabolic effects.
View Article and Find Full Text PDFDiabetes mellitus-associated damage to the microvasculature of the brain is caused by hyperglycemia-induced oxidative stress, which results in pericyte loss, blood-brain barrier disruption, and impaired cognitive function. Oxidative stress, in diabetes, is caused by reactive oxygen species produced during accelerated respiration (mitochondrial oxidative metabolism of glucose). The rate of respiration is regulated by mitochondrial carbonic anhydrases (CAs).
View Article and Find Full Text PDFRecent studies indicate that glucagon-like peptide 1 (GLP-1) receptor agonists, currently used in the management of type 2 diabetes, exhibit neurotrophic and neuroprotective effects in amyloid-β (Aβ) toxicity models of Alzheimer's disease (AD). We investigated the potential pro-cognitive and neuroprotective effects of the once-daily GLP-1 receptor agonist liraglutide in senescence-accelerated mouse prone 8 (SAMP8) mice, a model of age-related sporadic AD not dominated by amyloid plaques. Six-month-old SAMP8 mice received liraglutide (100 or 500 μg/kg/day, s.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disease. Currently, there are no therapies to stop or reverse the symptoms of AD. We have developed an antisense oligonucleotide (OL-1) against the amyloid-β protein precursor (AβPP) that can decrease AβPP expression and amyloid-β protein (Aβ) production.
View Article and Find Full Text PDFGlycogen synthase kinase (GSK)-3β is a multifunctional protein that has been implicated in the pathological characteristics of Alzheimer's disease (AD), including the heightened levels of neurofibrillary tangles, amyloid-beta (Aβ), and neurodegeneration. In this study we used 12-month-old SAMP8 mice, an AD model, to examine the effects GSK-3β may cause regarding the cognitive impairment and oxidative stress associated with AD. To suppress the level of GSK-3β, SAMP8 mice were treated with an antisense oligonucleotide (GAO) directed at this kinase.
View Article and Find Full Text PDFAmyloid β-peptide (Aβ) plays a central role in the pathophysiology of Alzheimer's disease (AD) through the induction of oxidative stress. This peptide is produced by proteolytic cleavage of amyloid precursor protein (APP) by the action of β- and γ-secretases. Previous studies demonstrated that reduction of Aβ, using an antisense oligonucleotide (AO) directed against the Aβ region of APP, reduced oxidative stress-mediated damage and prevented or reverted cognitive deficits in senescence-accelerated prone mice (SAMP8), a useful animal model for investigating the events related to Aβ pathology and possibly to the early phase of AD.
View Article and Find Full Text PDFBackground: Immune cell trafficking into the CNS and other tissues plays important roles in health and disease. Rapid quantitative methods are not available that could be used to study many of the dynamic aspects of immune cell-tissue interactions.
Methods: We used pharmacokinetics and modeling to quantify and characterize the trafficking of radioactively labeled lymphocytes into brain and peripheral tissues.