Publications by authors named "Michael Niederweis"

DEV is an obligatory lytic Pseudomonas phage of the N4-like genus, recently reclassified as Schitoviridae. The DEV genome encodes 91 ORFs, including a 3398 amino acid virion-associated RNA polymerase (vRNAP). Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts.

View Article and Find Full Text PDF

DEV is an obligatory lytic phage of the N4-like genus, recently reclassified as . The DEV genome encodes 91 ORFs, including a 3,398 amino acid virion-associated RNA polymerase. Here, we describe the complete architecture of DEV, determined using a combination of cryo-electron microscopy localized reconstruction, biochemical methods, and genetic knockouts.

View Article and Find Full Text PDF

Outer membrane proteins perform essential functions in uptake and secretion processes in bacteria. MspA is an octameric channel protein in the outer membrane of Mycobacterium smegmatis and is structurally distinct from any other known outer membrane protein. MspA is the founding member of a family with more than 3000 homologs and is one of the most widely used proteins in nanotechnological applications due to its advantageous pore structure and extraordinary stability.

View Article and Find Full Text PDF

Drug-resistant is a worldwide health-care problem rendering current tuberculosis (TB) drugs ineffective. Drug efflux is an important mechanism in bacterial drug resistance. The MmpL4 and MmpL5 transporters form functionally redundant complexes with their associated MmpS4 and MmpS5 proteins and constitute the inner membrane components of an essential siderophore secretion system of .

View Article and Find Full Text PDF

Background: subspecies ( ) is increasingly recognized as an emerging bacterial pathogen, particularly in cystic fibrosis (CF) patients and CF centres' respiratory outbreaks. We characterized genomic and phenotypic changes in 15 serial isolates from two CF patients (1S and 2B) with chronic pulmonary M. massiliense infection leading to death, as well as four isolates from a CF centre outbreak in which patient 2B was the index case.

View Article and Find Full Text PDF
Article Synopsis
  • - M. tuberculosis relies on heme as both a crucial nutrient and a source of iron for its survival and ability to cause disease, but heme can also be toxic.
  • - The research reveals that M. tuberculosis prefers using heme it synthesizes internally over heme obtained from outside sources, suggesting a complex regulatory system for heme production and uptake.
  • - Targeting the unique heme biosynthetic pathway may provide a new therapeutic approach for treating tuberculosis, especially since inhibiting heme synthesis does not trigger known heme import mechanisms.
View Article and Find Full Text PDF

Iron is essential for growth of Mycobacterium tuberculosis, the causative agent of tuberculosis. To acquire iron from the host, M. tuberculosis uses the siderophores called mycobactins and carboxymycobactins.

View Article and Find Full Text PDF

Transmembrane protein channels enable fast and highly sensitive detection of single molecules. Nanopore sequencing of DNA was achieved using an engineered Mycobacterium smegmatis porin A (MspA) in combination with a motor enzyme. Due to its favorable channel geometry, the octameric MspA pore exhibits the highest current level compared with other pore proteins.

View Article and Find Full Text PDF

Type VII secretion systems (T7SS) have been identified in Actinobacteria and Firmicutes and have been shown to secrete effector proteins with functions in virulence, host toxicity, and/or interbacterial killing in a few genera. Bioinformatic analysis indicates that isolates of Group B Streptococcus (GBS) encode at least four distinct subtypes of T7SS machinery, three of which encode adjacent putative T7SS effectors with WXG and LXG motifs. However, the function of T7SS in GBS pathogenesis is unknown.

View Article and Find Full Text PDF

Bacteriophages of the family densely package their genomes into precursor capsids alongside internal virion proteins called ejection proteins. In phage T7 these proteins (gp14, gp15, and gp16) are ejected into the host envelope forming a DNA-ejectosome for genome delivery. Here, we describe the purification and characterization of recombinant gp14, gp15, and gp16.

View Article and Find Full Text PDF

The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mycobacterium tuberculosis (Mtb) in macrophages. TNT is the C-terminal domain of the outer membrane protein CpnT and gains access to the cytosol to kill macrophages infected with Mtb. However, molecular mechanisms of TNT secretion and trafficking are largely unknown.

View Article and Find Full Text PDF

Hershey and Chase used bacteriophage T2 genome delivery inside Escherichia coli to demonstrate that DNA, not protein, is the genetic material. Seventy years later, our understanding of viral genome delivery in prokaryotes remains limited, especially for short-tailed phages of the Podoviridae family. These viruses expel mysterious ejection proteins found inside the capsid to form a DNA-ejectosome for genome delivery into bacteria.

View Article and Find Full Text PDF

The use of chaotropic reagents is common in biophysical characterization of biomolecules. When the study involves transmembrane protein channels, the stability of the protein channel and supporting bilayer membrane must be considered. In this letter, we show that planar bilayers composed of poly(1,2-butadiene)-b-poly(ethylene oxide) diblock copolymer are stable and leak-free at high guanidinium chloride concentrations, in contrast to diphytanoyl phosphatidylcholine bilayers, which exhibit deleterious leakage under similar conditions.

View Article and Find Full Text PDF

Mycobacterium tuberculosis secretes the tuberculosis necrotizing toxin (TNT) to kill host cells. Here, we show that the WXG100 proteins EsxE and EsxF are essential for TNT secretion. EsxE and EsxF form a water-soluble heterodimer (EsxEF) that assembles into oligomers and long filaments, binds to membranes, and forms stable membrane-spanning channels.

View Article and Find Full Text PDF

The biology of mycobacteria is dominated by a complex cell envelope of unique composition and structure and of exceptionally low permeability. This cell envelope is the basis of many of the pathogenic features of mycobacteria and the site of susceptibility and resistance to many antibiotics and host defense mechanisms. This review is focused on the transporters that assemble and functionalize this complex structure.

View Article and Find Full Text PDF

The genome-packaging motor of tailed bacteriophages and herpesviruses is a multisubunit protein complex formed by several copies of a large (TerL) and a small (TerS) terminase subunit. The motor assembles transiently at the portal protein vertex of an empty precursor capsid to power the energy-dependent packaging of viral DNA. Both the ATPase and nuclease activities associated with genome packaging reside in TerL.

View Article and Find Full Text PDF

Arabinosyltransferase B (EmbB) belongs to a family of membrane-bound glycosyltransferases that build the lipidated polysaccharides of the mycobacterial cell envelope, and are targets of anti-tuberculosis drug ethambutol. We present the 3.3 Å resolution single-particle cryo-electron microscopy structure of Mycobacterium smegmatis EmbB, providing insights on substrate binding and reaction mechanism.

View Article and Find Full Text PDF

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids.

View Article and Find Full Text PDF

Mycobacterium tuberculosis is a global health problem in part as a result of extensive cytotoxicity caused by the infection. Here, we show how M. tuberculosis causes caspase-1/NLRP3/gasdermin D-mediated pyroptosis of human monocytes and macrophages.

View Article and Find Full Text PDF

Mycobacteria have a distinctive glycolipid-rich outer membrane, the mycomembrane, which is a critical target for tuberculosis drug development. However, proteins that associate with the mycomembrane, or that are involved in its metabolism and host interactions, are not well-characterized. To facilitate the study of mycomembrane-related proteins, we developed photoactivatable trehalose monomycolate analogues that metabolically incorporate into the mycomembrane in live mycobacteria, enabling photo-cross-linking and click-chemistry-mediated analysis of mycolate-interacting proteins.

View Article and Find Full Text PDF

Iron is essential for nearly all bacterial pathogens, including Mycobacterium tuberculosis (Mtb), but is severely limited in the human host. To meet its iron needs, Mtb secretes siderophores, small molecules with high affinity for iron, and takes up iron-loaded mycobactins (MBT) and carboxymycobactins (cMBT), from the environment. Mtb is also capable of utilizing heme and hemoglobin which contain more than 70% of the iron in the human body.

View Article and Find Full Text PDF

Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug-gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the genomic library of knockout and knockdown (YKO/KD) strains to globally and quantitatively characterize differential drug-gene interaction for gemcitabine and cytarabine.

View Article and Find Full Text PDF

Iron is essential for growth of Mycobacterium tuberculosis (Mtb), but most iron in the human body is stored in heme within hemoglobin. Here, we demonstrate that the substrate-binding protein DppA of the inner membrane Dpp transporter is required for heme and hemoglobin utilization by Mtb. The 1.

View Article and Find Full Text PDF

Mycobacterium tuberculosis (Mtb) kills infected macrophages through necroptosis, a programmed cell death that enhances mycobacterial replication and dissemination. The tuberculosis necrotizing toxin (TNT) is the major cytotoxicity factor of Mtb in macrophages and induces necroptosis by NAD hydrolysis. Here, we show that the catalytic activity of TNT triggers the production of reactive oxygen species (ROS) in Mtb-infected macrophages causing cell death and promoting mycobacterial replication.

View Article and Find Full Text PDF

Upon host infection, secretes the tuberculosis necrotizing toxin (TNT) into the cytosol of infected macrophages, leading to host cell death by necroptosis. TNT hydrolyzes NAD in the absence of any exogenous cofactor, thus classifying it as a β-NAD glycohydrolase. However, TNT lacks sequence similarity with other NAD hydrolyzing enzymes and lacks the essential motifs involved in NAD binding and hydrolysis by these enzymes.

View Article and Find Full Text PDF