Purpose: Tax-interacting protein 1 (TIP1) is a cancer-specific radiation-inducible cell surface antigen that plays a role in cancer progression and resistance to therapy. This study aimed to develop a novel anti-TIP1 human antibody for noninvasive PET imaging in patients with cancer.
Experimental Design: A phage-displayed single-chain variable fragment (scFv) library was created from healthy donors' blood.
Off-target binding of [F]flortaucipir (FTP) can complicate quantitative PET analyses. An underdiscussed off-target region is the skull. Here, we characterize how often FTP skull binding occurs, its influence on estimates of Alzheimer disease pathology, its potential drivers, and whether skull uptake is a stable feature across time and tracers.
View Article and Find Full Text PDFAlpha-particle-emitting radiotherapies are of great interest for the treatment of disseminated cancer. Actinium-225 (Ac) produces four α-particles through its decay and is among the most attractive radionuclides for use in targeted radiotherapy applications. However, supply issues for this isotope have limited availability and increased cost for research and translation.
View Article and Find Full Text PDFPurpose: Current PET radiotracer production models result in facility and operational costs that scale prohibitively with the number of tracers synthesized, particularly those made as a single dose-on-demand. Short of a paradigm shift in the technology and economics of radiotracer production, the impact of PET on precision medicine will be limited. Inexpensive, microfluidic radiochemistry platforms have the potential to significantly reduce costs associated with dose-on-demand production and expand the breadth of PET tracers accessible for molecular imaging.
View Article and Find Full Text PDFN-[F]fluoroacetylcrizotinib, a fluorine-18 labeled derivative of the first FDA approved tyrosine kinase inhibitor (TKI) for the treatment of Anaplastic lymphoma kinase (ALK)-rearranged non-small cell lung cancer (NSCLC), crizotinib, was successfully synthesized for use in positron emission tomography (PET). Sequential in vitro biological evaluation of fluoracetylcrizotinib and in vivo biodistribution studies of [F]fluoroacetylcrizotinib demonstrated that the biological activity of the parent compound remained unchanged, with potent ALK kinase inhibition and effective tumor growth inhibition. These results show that [F]fluoroacetylcrizotinib has the potential to be a promising PET ligand for use in NSCLC imaging.
View Article and Find Full Text PDFThe current utilization of positron emission tomography (PET) imaging is limited due to the high costs associated with production facility start-up and operations; subsequently, there has been a movement towards microfluidic synthesis of radiolabeled imaging pharmaceuticals (tracers). In this review, we summarize the current status of microfluidic radiosynthesis units for producing fluorine-18 labeled PET imaging tracers, including a discussion of the relative strengths and weaknesses of such devices. In addition, we provide a brief overview of the radiotracers that have been produced using microfluidic devices to date.
View Article and Find Full Text PDFIn vivo targeting and visualization of cyclooxygenase-1 (COX-1) using multimodal positron emission tomography/computed tomography imaging represents a unique opportunity for early detection and/or therapeutic evaluation of ovarian cancer because overexpression of COX-1 has been characterized as a pathologic hallmark of the initiation and progression of this disease. The furanone core is a common building block of many synthetic and natural products that exhibit a wide range of biological activities. We hypothesize that furanone-based COX-1 inhibitors can be designed as imaging agents for the early detection, delineation of tumor margin, and evaluation of treatment response of ovarian cancer.
View Article and Find Full Text PDFImpulsivity is a transdiagnostic feature of a range of externalizing psychiatric disorders. Preclinical work links reduced ventral striatal dopamine transporter (DAT) availability with heightened impulsivity and novelty seeking. However, there is a lack of human data investigating the relationship between DAT availability, particularly in subregions of the striatum, and the personality traits of impulsivity and novelty seeking.
View Article and Find Full Text PDFIntroduction: The natural amino acid l-Glutamine (Gln) is essential for both cell growth and proliferation. In addition to glucose, cancer cells utilize Gln as a carbon source for ATP production, biosynthesis, and as a defense against reactive oxygen species. The utilization of [C]Gln has been previously reported as a biomarker for tissues with an elevated demand for Gln, however, the previous reports for the preparation of [C]Gln were found to be lacking several crucial aspects necessary for transition to human production.
View Article and Find Full Text PDFPurpose: There is an urgent need for the development of novel positron emission tomography (PET) tracers for glioma imaging. In this study, we developed a novel PET probe ([F]VUIIS1018A) by targeting translocator protein (TSPO), an imaging biomarker for glioma. The purpose of this preclinical study was to evaluate this novel TSPO probe for glioma imaging.
View Article and Find Full Text PDFHerein, we report the development of a simple, high-throughput and efficient microfluidic system for synthesizing radioactive [18F]fallypride, a PET imaging radiotracer widely used in medical research. The microfluidic chip contains all essential modules required for the synthesis and purification of radioactive fallypride. The radiochemical yield of the tracer is sufficient for multiple animal injections for preclinical imaging studies.
View Article and Find Full Text PDFPotentiating anti-tumor immunity by inducing tumor inflammation and T cell-mediated responses are a promising area of cancer therapy. Immunomodulatory agents that promote these effects function via a wide variety of mechanisms, including upregulation of antigen presentation pathways. Here, we show that major histocompatibility class-I (MHC-I) genes are methylated in human breast cancers, suppressing their expression.
View Article and Find Full Text PDFThe unique metabolic demands of cancer cells underscore potentially fruitful opportunities for drug discovery in the era of precision medicine. However, therapeutic targeting of cancer metabolism has led to surprisingly few new drugs to date. The neutral amino acid glutamine serves as a key intermediate in numerous metabolic processes leveraged by cancer cells, including biosynthesis, cell signaling, and oxidative protection.
View Article and Find Full Text PDFThe Managers of Molecular Imaging Laboratories (MOMIL) interest group in the World Molecular Imaging Society provides a forum for exchanging information between researchers who manage molecular imaging laboratories and institutional core facilities. This information exchange includes operational procedures for acquiring and analyzing imaging results, including considerations for quality assurance and quality control, and animal handling and care for imaging studies. MOMIL also exchanges administrative policies, interactions with collaborators and clients, and industry relations.
View Article and Find Full Text PDFTranslocator protein (TSPO) is a validated target for molecular imaging of a variety of human diseases and disorders. Given its involvement in cholesterol metabolism, TSPO expression is commonly elevated in solid tumors, including glioma, colorectal cancer, and breast cancer. TSPO ligands capable of detection by optical imaging are useful molecular tracers for a variety of purposes that range from quantitative biology to drug discovery.
View Article and Find Full Text PDFPurpose: Positron emission tomography (PET) ligands targeting translocator protein (TSPO) are potential imaging diagnostics of cancer. In this study, we report two novel, high-affinity TSPO PET ligands that are 5,7 regioisomers, [F]VUIIS1009A ([F]3A) and [F]VUIIS1009B ([F]3B), and their initial in vitro and in vivo evaluation in healthy mice and glioma-bearing rats.
Procedures: VUIIS1009A/B was synthesized and confirmed by X-ray crystallography.
Purpose: Non-invasive imaging is central to hepatocellular carcinoma (HCC) diagnosis; however, conventional modalities are limited by smaller tumors and other chronic diseases that are often present in patients with HCC, such as cirrhosis. This pilot study evaluated the feasibility of (4S)-4-(3-[F]fluoropropyl)-L-glutamic acid ([F]FSPG) positron emission tomography (PET)/X-ray computed tomography (CT) to image HCC. [F]FSPG PET/CT was compared to standard-of-care (SOC) magnetic resonance imaging (MRI) and CT, and [C]acetate PET/CT, commonly used in this setting.
View Article and Find Full Text PDFTranslocator protein (TSPO) represents an attractive target for molecular imaging and therapy due to its prevalence and critical roles played in oncology and other pathologies. Based upon our previously optimized pyrazolopyrimidine scaffold, we elucidated new structure activity relationships related to N,N-disubstitutions of the terminal acetamide on pyrazolopyrimidines and further explored the impacts of these substituents on lipophilicity and plasma protein binding. Several novel chemical probes reported here exhibited significantly increased binding affinity, suitable lipophilicity and protein binding compared with contemporary TSPO ligands.
View Article and Find Full Text PDFPurpose: Alanine-serine-cysteine transporter 2 (ASCT2) expression has been demonstrated as a promising lung cancer biomarker. (2S,4R)-4-[(18)F]Fluoroglutamine (4-[(18)F]fluoro-Gln) positron emission tomography (PET) was evaluated in preclinical models of non-small cell lung cancer as a quantitative, non-invasive measure of ASCT2 expression.
Procedures: In vivo microPET studies of 4-[(18)F]fluoro-Gln uptake were undertaken in human cell line xenograft tumor-bearing mice of varying ASCT2 levels, followed by a genetically engineered mouse model of epidermal growth factor receptor (EGFR)-mutant lung cancer.
Background: In previous work, we demonstrated the presence of hydroxyapetite (type II microcalcification), HAP, in triple negative MDA-MB-231 breast cancer cells. We used (18)F-NaF to detect these types of cancers in mouse models as the free fluorine, (18)F(-), binds to HAP similar to bone uptake. In this work, we investigate other bone targeting agents and techniques including (99m)Tc-MDP SPECT and Osteosense 750EX FMT imaging as alternatives for breast cancer diagnosis via targeting HAP within the tumor microenvironment.
View Article and Find Full Text PDFIntroduction: High-yielding, automated production of a PET tracer that reflects proliferation, 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]FLT), is reported using a modified Bioscan Coincidence FDG reaction module.
Methods: Production of [(18)F]FLT was implemented through: (1) modification of an original FDG manifold; (2) application of an alternate time sequence; and (3) altered solid-phase extraction (SPE) purification. Quality control testing, including standard radiochemical figures of merit and preclinical positron emission tomography (PET) imaging, was carried out.
A novel synthesis of the translocator protein (TSPO) ligand 7-chloro-N,N,5-trimethyl-4-oxo-3-phenyl-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (SSR180575, 3) was achieved in four steps from commercially available starting materials. Focused structure-activity relationship development about the pyridazinoindole ring at the N3 position led to the discovery of 7-chloro-N,N,5-trimethyl-4-oxo-3(6-fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide (14), a novel ligand of comparable affinity. Radiolabeling with fluorine-18 ((18)F) yielded 7-chloro-N,N,5-trimethyl-4-oxo-3(6-[(18)F]fluoropyridin-2-yl)-3,5-dihydro-4H-pyridazino[4,5-b]indole-1-acetamide ([(18)F]-14) in high radiochemical yield and specific activity.
View Article and Find Full Text PDF