The dynamics of active smectic liquid crystals confined on a spherical surface is explored through an active phase field crystal model. Starting from an initially randomly perturbed isotropic phase, several types of topological defects are spontaneously formed, and then annihilate during a coarsening process until a steady state is achieved. The coarsening process is highly complex involving several scaling laws of defect densities as a function of time where different dynamical exponents can be identified.
View Article and Find Full Text PDFEmbryos develop in a surrounding that guides key aspects of their development. For example, the anteroposterior (AP) body axis is always aligned with the geometric long axis of the surrounding eggshell in fruit flies and worms. The mechanisms that ensure convergence of the AP axis with the long axis of the eggshell remain unresolved.
View Article and Find Full Text PDFUniaxial nematic liquid crystals whose molecular orientation is subjected to tangential anchoring on a curved surface offer a non trivial interplay between the geometry and the topology of the surface and the orientational degree of freedom. We consider a general thin film limit of a Landau-de Gennes Q-tensor model which retains the characteristics of the 3D model. From this, previously proposed surface models follow as special cases.
View Article and Find Full Text PDFWe consider a thin film limit of a Landau-de Gennes Q-tensor model. In the limiting process, we observe a continuous transition where the normal and tangential parts of the Q-tensor decouple and various intrinsic and extrinsic contributions emerge. The main properties of the thin film model, like uniaxiality and parameter phase space, are preserved in the limiting process.
View Article and Find Full Text PDFRecent advances in cell biology enable precise molecular perturbations. The spatiotemporal organization of cells and organisms, however, also depends on physical processes such as diffusion or cytoplasmic flows, and strategies to perturb physical transport inside cells are not yet available. Here, we demonstrate focused-light-induced cytoplasmic streaming (FLUCS).
View Article and Find Full Text PDF