Publications by authors named "Michael N Dawson"

AbstractMass mortality events provide valuable insight into biological extremes and also ecological interactions more generally. The sea star wasting epidemic that began in 2013 catalyzed study of the microbiome, genetics, population dynamics, and community ecology of several high-profile species inhabiting the northeastern Pacific but exposed a dearth of information on the diversity, distributions, and impacts of sea star wasting for many lesser-known sea stars and a need for integration across scales. Here, we combine datasets from single-site to coast-wide studies, across time lines from weeks to decades, for 65 species.

View Article and Find Full Text PDF

Wildlife diseases, such as the sea star wasting (SSW) epizootic that outbroke in the mid-2010s, appear to be associated with acute and/or chronic abiotic environmental change; dissociating the effects of different drivers can be difficult. The sunflower sea star, Pycnopodia helianthoides, was the species most severely impacted during the SSW outbreak, which overlapped with periods of anomalous atmospheric and oceanographic conditions, and there is not yet a consensus on the cause(s). Genomic data may reveal underlying molecular signatures that implicate a subset of factors and, thus, clarify past events while also setting the scene for effective restoration efforts.

View Article and Find Full Text PDF

AbstractAn explanation for variation in impacts of sea star wasting disease across asteroid species remains elusive. Although various traits have been suggested to play a potential role in sea star wasting susceptibility, currently we lack a thorough comparison that explores how life-history and natural history traits shape responses to mass mortality across diverse asteroid taxa. To explore how asteroid traits may relate to sea star wasting, using available data and recognizing the potential for biological correlations to be driven by phylogeny, we generated a supertree, tested traits for phylogenetic association, and evaluated associations between traits and sea star wasting impact.

View Article and Find Full Text PDF

AbstractMass mortality events are increasing globally in frequency and magnitude, largely as a result of human-induced change. The effects of these mass mortality events, in both the long and short term, are of imminent concern because of their ecosystem impacts. Genomic data can be used to reveal some of the population-level changes associated with mass mortality events.

View Article and Find Full Text PDF

Theoretically, species' characteristics should allow estimation of dispersal potential and, in turn, explain levels of population genetic differentiation. However, a mismatch between traits and genetic patterns is often reported for marine species, and interpreted as evidence that life-history traits do not influence dispersal. Here, we couple ecological and genomic methods to test the hypothesis that species with attributes favouring greater dispersal potential-e.

View Article and Find Full Text PDF

Efforts to protect the ecologically and economically significant California Current Ecosystem from global change will greatly benefit from data about patterns of local adaptation and population connectivity. To facilitate that work, we present a reference-quality genome for the giant pink sea star, Pisaster brevispinus, a species of ecological importance along the Pacific west coast of North America that has been heavily impacted by environmental change and disease. We used Pacific Biosciences HiFi long sequencing reads and Dovetail Omni-C proximity reads to generate a highly contiguous genome assembly of 550 Mb in length.

View Article and Find Full Text PDF

The California ribbed mussel, Mytilus californianus, is an ecosystem engineer crucial for the survival of many marine species inhabiting the intertidal zone of California. Here, we describe the first reference genome for M. californianus and compare it to previously published genomes from three other Mytilus species: M.

View Article and Find Full Text PDF

Ecosystems globally are under threat from ongoing anthropogenic environmental change. Effective conservation management requires more thorough biodiversity surveys that can reveal system-level patterns and that can be applied rapidly across space and time. Using modern ecological models and community science, we integrate environmental DNA and Earth observations to produce a time snapshot of regional biodiversity patterns and provide multi-scalar community-level characterization.

View Article and Find Full Text PDF

AbstractSpatiotemporal environmental change can produce phenotypic differences within and between populations. For scyphozoans, the effect of environmental variation on phenotype has been unclear because of multiple challenges, including difficulties delimiting populations. Marine lakes, bodies of seawater entirely surrounded by land, provide an opportunity to study discrete populations and capture responses to perturbations.

View Article and Find Full Text PDF

Beginning in 2013, sea stars throughout the Eastern North Pacific were decimated by wasting disease, also known as "asteroid idiopathic wasting syndrome" (AIWS) due to its elusive aetiology. The geographic extent and taxonomic scale of AIWS meant events leading up to the outbreak were heterogeneous, multifaceted, and oftentimes unobserved; progression from morbidity to death was rapid, leaving few tell-tale symptoms. Here, we take a forensic genomic approach to discover candidate genes that may help explain sea star wasting syndrome.

View Article and Find Full Text PDF

Documenting ecological patterns across spatially, temporally and taxonomically diverse ecological communities is necessary for a general understanding of the processes shaping biodiversity. A major gap in our understanding remains the comparison of diversity patterns across a broad spectrum of evolutionarily and functionally diverse organisms, particularly in the marine realm. Here, we aim to narrow this gap by comparing the diversity patterns of free-living microbes and macro-invertebrates across a natural experiment provided by the marine lakes of Palau: geographically discrete and environmentally heterogeneous bodies of seawater with comparable geological and climatic history, and a similar regional species pool.

View Article and Find Full Text PDF

Mastigias, the 'golden' or 'spotted' jellyfish, is distributed throughout the Indo-Pacific. Specimens are identified routinely as Mastigias papua, although eight species were described historically, and molecular analyses evince at least three phylogenetic species. Understanding species diversity in Mastigias has become a priority because of its growing relevance in studies of boom-bust dynamics related to environmental change, cryptic species, local adaptation, parallel evolution, and peripatric speciation.

View Article and Find Full Text PDF

Standing genetic variation enables or restricts a population's capacity to respond to changing conditions, including the extreme disturbances expected to increase in frequency and intensity with continuing anthropogenic climate change. However, we know little about how populations might respond to extreme events with rapid genetic shifts, or how population dynamics may influence and be influenced by population genomic change. We use a range-wide epizootic, sea star wasting disease, that onset in mid-2013 and caused mass mortality in to explore how a keystone marine species responded to an extreme perturbation.

View Article and Find Full Text PDF

The inclusion of next-generation sequencing technologies in population genetic and phylogenetic studies has elevated the need to balance time and cost of DNA extraction without compromising DNA quality. We tested eight extraction methods - ranging from low- to high-throughput techniques - and eight phyla: Annelida, Arthropoda, Cnidaria, Chordata, Echinodermata, Mollusca, Ochrophyta and Porifera. We assessed DNA yield, purity, efficacy and cost of each method.

View Article and Find Full Text PDF

Microbial communities consume oxygen, alter biogeochemistry and compress habitat in aquatic ecosystems, yet our understanding of these microbial-biogeochemical-ecological interactions is limited by a lack of systematic analyses of low-oxygen ecosystems. Marine lakes provide an ideal comparative system, as they range from well-mixed holomictic lakes to stratified, anoxic, meromictic lakes that vary in their vertical extent of anoxia. We examined microbial communities inhabiting six marine lakes and one ocean site using pyrosequencing of 16S rRNA genes.

View Article and Find Full Text PDF

Mass mortalities in natural populations, particularly those that leave few survivors over large spatial areas, may cause long-term ecological perturbations. Yet mass mortalities may remain undocumented or poorly described due to challenges in responding rapidly to unforeseen events, scarcity of baseline data, and difficulties in quantifying rare or patchily distributed species, especially in remote or marine systems. Better chronicling the geographic pattern and intensity of mass mortalities is especially critical in the face of global changes predicted to alter regional disturbance regimes.

View Article and Find Full Text PDF

Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear. A persistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling.

View Article and Find Full Text PDF

The opportunity to reflect broadly on the accomplishments, prospects, and reach of a field may present itself relatively infrequently. Each biennial meeting of the International Biogeography Society showcases ideas solicited and developed largely during the preceding year, by individuals or teams from across the breadth of the discipline. Here, we highlight challenges, developments, and opportunities in biogeography from that biennial synthesis.

View Article and Find Full Text PDF

Background: The question of how many marine species exist is important because it provides a metric for how much we do and do not know about life in the oceans. We have compiled the first register of the marine species of the world and used this baseline to estimate how many more species, partitioned among all major eukaryotic groups, may be discovered.

Results: There are ∼226,000 eukaryotic marine species described.

View Article and Find Full Text PDF

Present-day phylogeographic patterns have been shaped by the dual histories of lineages and places, producing a diversity of relationships that may challenge discovery of general rules. For example, the predicted positive correlation between dispersal ability and gene flow has been supported inconsistently, suggesting unaccounted complexity in theory or the comparative framework. Here, I extend the sympatric sister-species approach, in which variance between lineages and places is minimized, to sister clades and test a fundamental assumption of comparative genetic studies of dispersal: that taxa which evolved at the same time and in the same place will, if they have similar life histories and ecologies, have essentially the same phylogeographic structure.

View Article and Find Full Text PDF

A stable phylogenetic hypothesis for families within jellyfish class Scyphozoa has been elusive. Reasons for the lack of resolution of scyphozoan familial relationships include a dearth of morphological characters that reliably distinguish taxa and incomplete taxonomic sampling in molecular studies. Here, we address the latter issue by using maximum likelihood and Bayesian methods to reconstruct the phylogenetic relationships among all 19 currently valid scyphozoan families, using sequence data from two nuclear genes: 18S and 28S rDNA.

View Article and Find Full Text PDF

Molecular analyses have revealed many cryptic species in the oceans, often permitting small morphological differences to be recognized as diagnosing species, but less commonly leading to consideration of cryptic ecology. Here, based on analyses of three nuclear DNA sequence markers (ribosomal 18S, 28S, and internal transcribed spacer 1 [ITS1]), two mitochondrial DNA markers (cytochrome c oxidase subunit I [COI] and ribosomal 16S), and 55 morphological features, we revise the classification of the enigmatic jellyfish genus Drymonema. We describe a new scyphozoan family, Drymonematidae, elevating the previous subfamily Drymonemidae to accommodate three species: the type species D.

View Article and Find Full Text PDF