Although both central and peripheral inflammation have been observed consistently in depression, the relationship between the two remains obscure. Extra-axial immune cells may play a role in mediating the connection between central and peripheral immunity. This study investigates the potential roles of calvarial bone marrow and parameningeal spaces in mediating interactions between central and peripheral immunity in depression.
View Article and Find Full Text PDFAfter myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI.
View Article and Find Full Text PDFDecades of research have characterized diverse immune cells surveilling the CNS. More recently, the discovery of osseous channels (so-called 'skull channels') connecting the meninges with the skull and vertebral bone marrow has revealed a new layer of complexity in our understanding of neuroimmune interactions. Here we discuss our current understanding of skull and vertebral bone marrow anatomy, its contribution of leukocytes to the meninges, and its surveillance of the CNS.
View Article and Find Full Text PDFMigraine is a leading cause of disability in more than one billion people worldwide, yet it remains universally underappreciated, even by individuals with the condition. Among other shortcomings, current treatments (often repurposed agents) have limited efficacy and potential adverse effects, leading to low treatment adherence. After the introduction of agents that target the calcitonin gene-related peptide pathway, another new drug class, the ditans - a group of selective serotonin 5-HT receptor agonists - has just reached the international market.
View Article and Find Full Text PDFBackground And Aims: Cortical spreading depression (CSD), a transient neuronal and glial depolarization that propagates slowly across the cerebral cortex, is the putative electrophysiological event underlying migraine aura and a headache trigger. Migraine is three times more prevalent in women than men, linked to circulating female hormones. High estrogen levels or estrogen withdrawal may be a migraine trigger for many women.
View Article and Find Full Text PDFMigraine is a complex neurovascular pain disorder linked to the meninges, a border tissue innervated by neuropeptide-containing primary afferent fibers chiefly from the trigeminal nerve. Electrical or mechanical stimulation of this nerve surrounding large blood vessels evokes headache patterns as in migraine, and the brain, blood, and meninges are likely sources of headache triggers. Cerebrospinal fluid may play a significant role in migraine by transferring signals released from the brain to overlying pain-sensitive meningeal tissues, including dura mater.
View Article and Find Full Text PDFSeveral preclinical and clinical lines of evidence suggest a role of neuroinflammation in migraine. Neuroimaging offers the possibility to investigate and localize neuroinflammation in vivo in patients with migraine, and to characterize specific inflammatory constituents, such as vascular permeability, and macrophage or microglia activity. Despite all imaging data accumulated on neuroinflammation across the past three decades, an overview of the imaging evidence of neuroinflammation in migraine is still missing.
View Article and Find Full Text PDFInteractions between the immune and central nervous systems strongly influence brain health. Although the blood-brain barrier restricts this crosstalk, we now know that meningeal gateways through brain border tissues facilitate intersystem communication. Cerebrospinal fluid (CSF), which interfaces with the glymphatic system and thereby drains the brain's interstitial and perivascular spaces, facilitates outward signaling beyond the blood-brain barrier.
View Article and Find Full Text PDFBackground: Ischemic stroke is the most common cause of complex chronic disability and the third leading cause of death worldwide. In recovering stroke patients, peak activation within the ipsilesional primary motor cortex (M1) during the performance of a simple motor task has been shown to exhibit an anterior shift in many studies and a posterior shift in other studies.
Objective: We investigated this discrepancy in chronic stroke patients who completed a robot-assisted rehabilitation therapy program.
New rehabilitation strategies enabled by technological developments are challenging the prevailing concept of there being a limited window for functional recovery after stroke. In this study, we examined the utility of a robot-assisted therapy used in combination with a serious game as a rehabilitation and motor assessment tool in patients with chronic stroke. We evaluated 928 game rounds from 386 training sessions of 8 patients who had suffered an ischemic stroke affecting middle cerebral artery territory that incurred at least 6 months prior.
View Article and Find Full Text PDFBackground: Migraine is a common headache disorder, with cortical spreading depolarization (CSD) considered as the underlying electrophysiological event. CSD is a slowly propagating wave of neuronal and glial depolarization. Sleep disorders are well known risk factors for migraine chronification, and changes in wake-sleep pattern such as sleep deprivation are common migraine triggers.
View Article and Find Full Text PDFObjective: Cortical spreading depression (CSD) underlies the neurobiology of migraine with aura (MWA). Animal studies reveal networks of microvessels linking brain-meninges-bone marrow. CSD activates the trigeminovascular system, evoking a meningeal inflammatory response.
View Article and Find Full Text PDFThe underlying causes of migraine headache remained enigmatic for most of the 20th century. In 1979, The Lancet published a novel hypothesis proposing an integral role for the neuropeptide-containing trigeminal nerve. This hypothesis led to a transformation in the migraine field and understanding of key concepts surrounding migraine, including the role of neuropeptides and their release from meningeal trigeminal nerve endings in the mechanism of migraine, blockade of neuropeptide release by anti-migraine drugs, and activation and sensitisation of trigeminal afferents by meningeal inflammatory stimuli and upstream role of intense brain activity.
View Article and Find Full Text PDFRationale: After a stroke, patients frequently experience altered systemic immunity resulting in peripheral immunosuppression and higher susceptibility to infections, which is at least partly attributed to lymphopenia. The mechanisms that profoundly change the systemic leukocyte repertoire after stroke are incompletely understood. Emerging evidence indicates that stroke alters hematopoietic output of the bone marrow.
View Article and Find Full Text PDFIncreasing evidence recognizes Alzheimer's disease (AD) as a multifactorial and heterogeneous disease with multiple contributors to its pathophysiology, including vascular dysfunction. The recently updated AD Research Framework put forth by the National Institute on Aging-Alzheimer's Association describes a biomarker-based pathologic definition of AD focused on amyloid, tau, and neuronal injury. In response to this article, here we first discussed evidence that vascular dysfunction is an important early event in AD pathophysiology.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
December 2018
Innate immune cells recruited to inflammatory sites have short life spans and originate from the marrow, which is distributed throughout the long and flat bones. While bone marrow production and release of leukocyte increases after stroke, it is currently unknown whether its activity rises homogeneously throughout the entire hematopoietic system. To address this question, we employed spectrally resolved in vivo cell labeling in the murine skull and tibia.
View Article and Find Full Text PDFMyeloperoxidase (MPO) is a pro-inflammatory enzyme abundantly secreted by activated myeloid cells after stroke. We show that when MPO activity is either blocked by the specific inhibitor 4-aminobenzoic acid hydrazide (ABAH) in wildtype (WT) mice or congenitally absent (MPO), there was decreased cell loss, including degenerating neurons and oligodendrocytes, in the ischemic brains compared to vehicle-treated WT mice after stroke. MPO inhibition also reduced the number of activated myeloid cells after ischemia.
View Article and Find Full Text PDFSeveral factors that modulate migraine, a common primary headache disorder, also affect susceptibility to cortical spreading depolarization (CSD). CSD is a wave of neuronal and glial depolarization and thought to underlie the migraine aura and possibly headache. Here, we tested whether caffeine, known to alleviate or trigger headache after acute exposure or chronic use/withdrawal, respectively, modulates CSD.
View Article and Find Full Text PDFBackground: Rho-associated kinases (ROCK1 and ROCK2) are important regulators of the actin cytoskeleton and endothelial nitric oxide synthase (eNOS). Because the phosphorylation of eukaryotic elongation factor-1A1 (eEF1A1) by ROCK2 is critical for eNOS expression, we hypothesized that this molecular pathway may play a critical role in neuroprotection following focal cerebral ischemia.
Methods and results: Adult male wild-type (WT) and mutant ROCK2 and eNOSmice were subjected to middle cerebral artery occlusion (MCAO), and cerebral infarct size, neurological deficit and absolute cerebral blood flow were measured.