We consider the evolution of arbitrarily large perturbations of a prescribed pure hydrodynamical flow of an electrically conducting fluid. We study whether the flow perturbations as well as the generated magnetic fields decay or grow with time and constitute a dynamo process. For that purpose we derive a generalized Reynolds-Orr equation for the sum of the kinetic energy of the hydrodynamic perturbation and the magnetic energy.
View Article and Find Full Text PDFThe Navier-Stokes equations generate an infinite set of generalized Lyapunov exponents defined by different ways of measuring the distance between exponentially diverging perturbed and unperturbed solutions. This set is demonstrated to be similar, yet different, from the generalized Lyapunov exponent that provides moments of distance between two fluid particles below the Kolmogorov scale. We derive rigorous upper bounds on dimensionless Lyapunov exponent of the fluid particles that demonstrate the exponent's decay with Reynolds number Re in accord with previous studies.
View Article and Find Full Text PDFWe study the statistics of fluid (gas) density and concentration of passive tracer particles (dust) in compressible turbulence. As Ma increases from small or moderate values, the density and the concentration in the inertial range go through a phase transition from a finite continuous smooth distribution to a singular multifractal spatial distribution. Multifractality is associated with scaling, which would not hold if the solenoidal and the potential components of the flow scaled differently, producing transport which is not self-similar.
View Article and Find Full Text PDFBackground: Population-based studies have demonstrated an association of single nucleotide polymorphisms close to the thyroid transcription factor forkhead box E1 (FOXE1) gene with thyroid cancer. The dysregulation of forkhead proteins is increasingly recognized to play a role in the development and progression of cancer. The objective of the study was to seek to identify novel mutations in FOXE1 in papillary thyroid cancer (PTC) and to assess the effect of these mutations on protein expression and transcriptional function on FOXE1 responsive promoters.
View Article and Find Full Text PDFBackground: Nuclear receptors (NRs) play a key role in endocrine signaling and metabolism and are important therapeutic targets in a number of hormone-dependent malignancies. Studies on the role of NRs in thyroid cancer are limited.
Objective: The objective of the study was to examine systematically the expression of the 48 human NRs in a series of benign and malignant thyroid tissues.
The saturation of the magnetorotational instability (MRI) in thin Keplerian disks through three-wave resonant interactions is introduced and discussed. That mechanism is a natural generalization of the fundamental decay instability discovered five decades ago for infinite, homogeneous, and immovable plasmas. The decay instability relies on the energy transfer from the MRI to stable slow Alfvén-Coriolis as well as magnetosonic waves.
View Article and Find Full Text PDFA new nondissipative mechanism is proposed for the saturation of the axisymmetric magnetorotational (MRI) instability in thin Keplerian disks that are subject to an axial magnetic field. That mechanism relies on the energy transfer from the MRI to stable magnetosonic waves. Such mode interaction is enabled due to the vertical stratification of the disk that results in the discretization of its MRI spectrum, as well as by applying the appropriate boundary conditions.
View Article and Find Full Text PDFThe absorption of acoustic energy by internal degrees of freedom of short chains is proposed as a new viable mechanism of ultrasound attenuation in ferrofluids. It is demonstrated that even though the volume fraction of the chains may be quite small, such an effect may reach the order of magnitude of viscous damping. In addition, by investigating the statistical properties of dimers in ferrofluids, it is shown that an applied magnetic field modifies the sound attenuation in a highly anisotropic manner.
View Article and Find Full Text PDF