Objectives: Pharmacologic pain treatments lack specific targeting and often produce unwanted side effects (eg, addiction, additional hyperalgesia). We previously established that the direct application of laser irradiation (direct photobiomodulation [PBM]) of the sural nerve reduces thermal hypersensitivity in a rodent model of chronic pain, but not mechanical hypersensitivity. These observations were consistent with a selective reduction in the small-diameter fiber contribution to electrophysiologically measured evoked response after direct PBM of a sensory nerve (saphenous).
View Article and Find Full Text PDFIntroduction: Photobiomodulation (PBM) has been studied since the 1960s as a clinical tool. More recently, PBM has been observed to reduce compound action potential components and hypersensitivities associated with neuropathic pains. However, no definitive description of efficacious light parameters has been determined.
View Article and Find Full Text PDFObjective: Photobiomodulation at higher irradiances has great potential as a pain-alleviating method that selectively inhibits small diameter nerve fibers and corresponding sensory experiences, such as nociception and heat sensation. The longevity and magnitude of these effects as a function of laser irradiation parameters at the nerve was explored.
Methods: In a rodent chronic pain model (spared nerve injury-SNI), light was applied directly at the sural nerve with four delivery schemes: two irradiance levels (7.
Objectives: Small-diameter afferent axons carry various sensory signals that are critical for vital physiological conditions but sometimes contribute to pathologies. Infrared (IR) neural inhibition (INI) can induce selective heat block of small-diameter axons, which holds potential for translational applications such as pain management. Previous research suggested that IR-heating-induced acceleration of voltage-gated potassium channel kinetics is the mechanism for INI.
View Article and Find Full Text PDF: Treating chronic pain using sub-perception Spinal Cord Stimulation (SCS) does not elicit paresthesia but is associated with long analgesic 'wash-in' (i.e. duration until maximum pain relief) and prolonged assessment of therapy.
View Article and Find Full Text PDFSpinal cord stimulation (SCS) is used clinically to limit chronic pain, but fundamental questions remain on the identity of axonal populations recruited. We developed an ex vivo adult mouse spinal cord preparation to assess recruitment following delivery of clinically analogous stimuli determined by downscaling a finite element model of clinical SCS. Analogous electric field distributions were generated with 300-µm × 300-µm electrodes positioned 200 µm above the dorsal column (DC) with stimulation between 50 and 200 µA.
View Article and Find Full Text PDFObjectives: Clinical high-frequency spinal cord stimulation (hfSCS) (>250 Hz) applied at subperception amplitudes reduces leg and low back pain. This study investigates, via labeling for c-fos-a marker of neural activation, whether 500 Hz hfSCS applied at amplitudes above and below the dorsal column (DC) compound action potential (CAP) threshold excites dorsal horn neurons.
Materials And Methods: DC CAP thresholds in rats were determined by applying single biphasic pulses of SCS to T -T segments using pulse widths of 40 or 200 μsec via a ball electrode placed over the left DC and increasing amplitude until a short latency CAP was observed on the L DC and sciatic nerve.
Objective: The PROCO RCT is a multicenter, double-blind, crossover, randomized controlled trial (RCT) that investigated the effects of rate on analgesia in kilohertz frequency (1-10 kHz) spinal cord stimulation (SCS).
Materials And Methods: Patients were implanted with SCS systems and underwent an eight-week search to identify the best location ("sweet spot") of stimulation at 10 kHz within the searched region (T8-T11). An electronic diary (e-diary) prompted patients for pain scores three times per day.
Objective: Deep brain stimulation (DBS) is an effective therapy for the treatment of a number of movement and neuropsychiatric disorders. The effectiveness of DBS is dependent on the density and location of stimulation in a given brain area. Adjustments are made to optimize clinical benefits and minimize side effects.
View Article and Find Full Text PDFAdvanced fabrication techniques have now made it possible to produce microelectrode arrays for recording the electrical activity of a large number of neurons in the intact brain for both clinical and basic science applications. However, the long-term recording performance desired for these applications is hindered by a number of factors that lead to device failure or a poor signal-to-noise ratio (SNR). The goal of this study was to identify factors that can affect recording quality using theoretical analysis of intracortical microelectrode recordings of single-unit activity.
View Article and Find Full Text PDFAdv Health Sci Educ Theory Pract
October 2010
Systems-based practice (SBP) is rarely taught or evaluated during medical school, yet is one of the required competencies once students enter residency. We believe Texas A&M College of Medicine students learn about systems issues informally, as they care for patients at a free clinic in Temple, TX. The mandatory free clinic rotation is part of the Internal Medicine clerkship and does not include formal instruction in SBP.
View Article and Find Full Text PDFConf Proc IEEE Eng Med Biol Soc
March 2008
Intracortical microelectrode recordings of neural activity show great promise as control signals for neuroprosthetic applications. However, faithful, consistent recording of single unit spiking activity with chronically implanted silicon-substrate microelectrode arrays has proven difficult. Many approaches seek to enhance the long-term performance of microelectrode arrays by, for example, increasing electrode biocompatibility, decreasing electrode impedance, or improving electrode interface properties through application of small voltage pulses.
View Article and Find Full Text PDFRestraining excitatory neurotransmission within a seizure focus provides a nondestructive treatment strategy for intractable neocortical epilepsy. Clostridial toxin light chain (LC) inhibits synaptic transmission by digesting a critical vesicle-docking protein, synaptobrevin, without directly altering neuronal health. This study tests the treatment efficacy of adenoviral vector delivered LC (AdLC) on a model of seizures in rats induced by motor cortex penicillin (PCN) injection.
View Article and Find Full Text PDFClin Neurophysiol
September 2005
Objective: The purpose of this study was to use computational modeling to better understand factors that impact neural recordings with silicon microelectrodes used in brain-machine interfaces.
Methods: A non-linear cable model of a layer V pyramidal cell was coupled with a finite-element electric field model with explicit representation of the microelectrode. The model system enabled analysis of extracellular neural recordings as a function of the electrode contact size, neuron position, edema, and chronic encapsulation.
J Magn Reson Imaging
May 2005
Purpose: To determine whether consistent regions of activity could be observed in the lumbar spinal cord of single subjects with spin-echo functional MRI (fMRI) if several repeated experiments were performed within a single imaging session.
Materials And Methods: Repeated fMRI experiments of the human lumbar spinal cord were performed at 1.5 T with a single-shot spin-echo technique (half-Fourier single-shot turbo spin-echo (HASTE)) as used by previous investigators, and a modified method (fluid-attenuated inversion recovery (FLAIR)-HASTE) that nulled the otherwise highly variable signal from the cerebrospinal fluid (CSF).
Intraspinal microstimulation is a means of eliciting coordinated motor responses for restoration of function. However, detailed maps of the neuroanatomy of the human spinal cord are lacking, and it is not clear where electrodes should be implanted. We developed an electrical approach to localize active neurons in the spinal cord using potentials recorded from the surface of the spinal cord.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
February 2004
Computer models of neurons are used to simulate neural behavior, and are important tools for designing neural prostheses. Computation time remains an issue when simulating large numbers of neurons or applying models to real time applications. Warman et al.
View Article and Find Full Text PDF