Despite significant progress in the treatment of multiple myeloma (MM), relapsed/refractory patients urgently require more effective therapies. We here describe the discovery, mechanism of action, and preclinical anti-MM activity of engineered toxin body MT-0169, a next-generation immunotoxin comprising a CD38-specific antibody fragment linked to a de-immunized Shiga-like toxin A subunit (SLTA) payload. We show that specific binding of MT-0169 to CD38 on MM cell lines triggers rapid internalization of SLTA, causing cell death via irreversible ribosome inhibition, protein synthesis blockade, and caspase 3/7 activation.
View Article and Find Full Text PDFSUMOylation, the covalent conjugation of small ubiquitin-like modifier (SUMO) proteins to protein substrates, has been reported to suppress type I interferon (IFN1) responses. TAK-981, a selective small-molecule inhibitor of SUMOylation, pharmacologically reactivates IFN1 signaling and immune responses against cancers. In vivo treatment of wild-type mice with TAK-981 up-regulated IFN1 gene expression in blood cells and splenocytes.
View Article and Find Full Text PDFAcute myeloid leukemia (AML) is an aggressive hematologic malignancy for which new therapeutic approaches are required. One such potential therapeutic strategy is to target the ubiquitin-like modifier-activating enzyme 1 (UBA1), the initiating enzyme in the ubiquitylation cascade in which proteins are tagged with ubiquitin moieties to regulate their degradation or function. Here, we evaluated TAK-243, a first-in-class UBA1 inhibitor, in preclinical models of AML.
View Article and Find Full Text PDFThe ubiquitin-proteasome system (UPS) comprises a network of enzymes that is responsible for maintaining cellular protein homeostasis. The therapeutic potential of this pathway has been validated by the clinical successes of a number of UPS modulators, including proteasome inhibitors and immunomodulatory imide drugs (IMiDs). Here we identified TAK-243 (formerly known as MLN7243) as a potent, mechanism-based small-molecule inhibitor of the ubiquitin activating enzyme (UAE), the primary mammalian E1 enzyme that regulates the ubiquitin conjugation cascade.
View Article and Find Full Text PDFThe nearly ubiquitous development of chemoresistant disease remains a major obstacle against improving outcomes for patients with ovarian cancer. In this investigation, we evaluated the preclinical activity of MLN4924, an investigational inhibitor of the NEDD8-activating enzyme, in ovarian cancer cells. Efficacy of MLN4924 both alone and in combination with platinum was assessed.
View Article and Find Full Text PDFPurpose: Ovarian cancer has the highest mortality rate of all female reproductive malignancies. Drug resistance is a major cause of treatment failure and novel therapeutic strategies are urgently needed. MLN4924 is a NEDDylation inhibitor currently under investigation in multiple phase I studies.
View Article and Find Full Text PDFMLN4924 is an investigational small-molecule inhibitor of the NEDD8-activating enzyme (NAE) in phase I clinical trials. NAE inhibition prevents the ubiquitination and proteasomal degradation of substrates for cullin-RING ubiquitin E3 ligases that support cancer pathophysiology, but the genetic determinants conferring sensitivity to NAE inhibition are unknown. To address this gap in knowledge, we conducted a genome-wide siRNA screen to identify genes and pathways that affect the lethality of MLN4924 in melanoma cells.
View Article and Find Full Text PDFMLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEβ as the primary mechanism of resistance to MLN4924.
View Article and Find Full Text PDFThe NEDD8 conjugation pathway is initiated by the NEDD8 E1, also known as NEDD8 activating enzyme (NAE) or APPBP1/UBA3 (Gong, Yeh. J Biol Chem 274:12063-12042, 1999). The best described biological role for NEDD8 conjugation is to regulate the activity of the cullin RING ligase (CRL) family of ubiquitin E3 ligases (Gong, Yeh.
View Article and Find Full Text PDFUbiquitin-activating enzyme (UAE or E1) activates ubiquitin via an adenylate intermediate and catalyzes its transfer to a ubiquitin-conjugating enzyme (E2). MLN4924 is an adenosine sulfamate analogue that was identified as a selective, mechanism-based inhibitor of NEDD8-activating enzyme (NAE), another E1 enzyme, by forming a NEDD8-MLN4924 adduct that tightly binds at the active site of NAE, a novel mechanism termed substrate-assisted inhibition (Brownell, J. E.
View Article and Find Full Text PDFCancer cells depend on signals that promote cell cycle progression and prevent programmed cell death that would otherwise result from cumulative, aberrant stress. These activities require the temporally controlled destruction of specific intracellular proteins by the ubiquitin-proteasome system (UPS). To a large extent, the control points in this process include a family of E3 ubiquitin ligases called cullin-RING ligases (CRLs).
View Article and Find Full Text PDFLoss of NEDD8-activating enzyme (NAE) function by siRNA knockdown or inhibition by the small molecule NAE inhibitor MLN4924 leads to increased steady-state levels of direct Cullin-RING ligase (CRL) substrates by preventing their ubiquitination and proteasome-dependent degradation. Many of these CRL substrates are involved in cell cycle progression, including a critical DNA replication licensing factor CDT1. Cell cycle analysis of asynchronous and synchronous cultures after NAE inhibition revealed effects on cell cycle distribution and activation of DNA break repair signaling pathways similar to that reported for CDT1 overexpression.
View Article and Find Full Text PDFMLN4924 is a first-in-class experimental cancer drug that inhibits the NEDD8-activating enzyme, thereby inhibiting cullin-RING E3 ubiquitin ligases and stabilizing many cullin substrates. The mechanism by which MLN4924 inhibits cancer cell proliferation has not been defined, although it is accompanied by DNA rereplication and attendant DNA damage. Here we show that stabilization of the DNA replication factor Cdt1, a substrate of cullins 1 and 4, is critical for MLN4924 to trigger DNA rereplication and inhibit cell proliferation.
View Article and Find Full Text PDFMLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action.
View Article and Find Full Text PDFThe NEDD8-activating enzyme (NAE) initiates a protein homeostatic pathway essential for cancer cell growth and survival. MLN4924 is a selective inhibitor of NAE currently in clinical trials for the treatment of cancer. Here, we show that MLN4924 is a mechanism-based inhibitor of NAE and creates a covalent NEDD8-MLN4924 adduct catalyzed by the enzyme.
View Article and Find Full Text PDFThe clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways.
View Article and Find Full Text PDFCancer Chemother Pharmacol
December 2005
The novel isocoumarin 2-(8-hydroxy-6-methoxy-1-oxo-1 H-2-benzopyran-3-yl) propionic acid (NM-3) has completed phase I clinical evaluation as an orally bioavailable angiogenesis inhibitor. NM-3 directly kills both endothelial and tumor cells in vitro at low mM concentrations and is effective in the treatment of diverse human tumor xenografts in mice. The present work has assessed the activity of NM-3 against human non-small-cell lung cancer (NSCLC) cells when used alone and in combination with docetaxel.
View Article and Find Full Text PDF2-(8-Hydroxy-6-methoxy-1-oxo-1Eta-2-benzopyran-3-yl)propionic acid (NM-3) is a small molecule isocoumarin derivative that has recently entered clinical trials as an orally bioavailable anticancer agent. NM-3 induces lethality of human carcinoma cells by both apoptotic and nonapoptotic mechanisms and potentiates the effects of cytotoxic chemotherapeutic agents. The present studies have evaluated the effects of NM-3 on human multiple myeloma (MM) cells.
View Article and Find Full Text PDFAntiangiogenic therapy, although effective in shrinking tumors, has not yet been established as a standalone treatment for cancer. This therapeutic limitation can be overcome by combining angiogenesis inhibitors with chemotherapeutic agents. NM-3, a small molecule isocoumarin, is a recently discovered angiogenesis inhibitor.
View Article and Find Full Text PDF