Background: The mare-foal relationship is essential for the well-being and growth of a foal. Mare's milk provides a foal with nutrients, protective immunity, and microbes. Within the first two weeks of life, there is a risk for a foal to suffer from diarrhea, particularly "foal heat diarrhea" which happens at about the time of a mare's estrus cycle but is more likely due to transitions in the microbiota in the foal's gastrointestinal (GI) tract.
View Article and Find Full Text PDFWhite striping (WS) is a common myopathy seen in fast-growing broilers. Studies have demonstrated that chitosan is effective as an antioxidant and has antiobesity and fat-absorption reduction properties. We hypothesized that the dietary supplementation of chitosan would have similar effects when fed to fast-growing broilers and would thus lower WS incidence and improve meat quality.
View Article and Find Full Text PDFTendons are dense connective tissues with relatively few cells which makes studying the molecular profile of the tissue challenging. There is not a consensus on the spatial location of various cell types within a tendon, nor the accompanying transcriptional profile. In the present study, we used two male rat patellar tendon samples for sequencing-based spatial transcriptomics to determine the gene expression profile.
View Article and Find Full Text PDFBecause equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C.
View Article and Find Full Text PDFObjectives: Equine tendinopathies are challenging because of the poor healing capacity of tendons commonly resulting in high re-injury rates. Within the tendon, different regions - tendon proper (TP) and peritenon (PERI) - contribute to the tendon matrix in differing capacities during injury and aging. Aged tendons have decreased repair potential; the underlying transcriptional and epigenetic changes that occur in the TP and PERI regions are not well understood.
View Article and Find Full Text PDFThe molecular events that drive post-natal tendon development are poorly characterized. In this study, we profiled morphological, mechanical, and transcriptional changes in the rat Achilles and patellar tendon before walking (P7), shortly after onset of walking (P14), and at motor maturity (P28). The Achilles and patellar tendons increased collagen content and mechanical strength similarly throughout post-natal development.
View Article and Find Full Text PDFTendinopathies remain the leading contributor to career-ending injuries in horses because of the complexity of tendon repair. As such, cell-based therapies like injections of adipose-derived mesenchymal stem cells (ADMSCs, or MSCs) into injured tendons are becoming increasingly popular though their long-term efficacy on a molecular and wholistic level remains contentious. Thus, we co-cultured equine MSCs with intrinsic (tendon proper) and extrinsic (peritenon) tendon cell populations to examine interactions between these cells.
View Article and Find Full Text PDFThe effect of mechanical load on tendinopathic tissue is usually studied in the context of identifying mechanisms responsible for tendon degradation. However, loading is also one of the most common treatments for tendinopathy. It is therefore possible that different loads result in different cellular responses within a tendon.
View Article and Find Full Text PDFBackground: Warmblood Fragile Foal Syndrome Type 1 (WFFS) is an autosomal recessive disorder reported previously only in warmbloods and thought to be caused by a variant in the gene procollagen-lysine,2-oxoglutarate 5-dioxygenase 1 (PLOD1, c.2032G>A, p.Gly678Arg).
View Article and Find Full Text PDFThe physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity.
View Article and Find Full Text PDFPoult Sci
April 2021
Significant improvements in genetics, nutrition, and food efficiency have had a great impact on the rapid growth of broilers, notably with increases in muscle mass. However, with rapid growth, the broiler industry has been negatively impacted by the increased incidence of myopathies, including white striping. White striping affects the pectoralis major muscle of broilers, particularly the larger breasts of rapidly growing modern commercial broiler lines.
View Article and Find Full Text PDFObjective: Prophylactic supplementation of psyllium husk is recommended to enhance passage of ingested sand from the gastrointestinal tracts of horses. We hypothesized that psyllium supplementation would increase fecal sand passage and favorably alter bacterial populations in the hindgut. Six yearlings and six mature mares were fed a psyllium supplement in the diet daily for seven days.
View Article and Find Full Text PDFBackground: Tendon injuries amount to one of the leading causes of career-ending injuries in horses due to the inability for tendon to completely repair and the high reinjury potential. As a result, novel therapeutics are necessary to improve repair with the goal of decreasing leg lameness and potential reinjury. Small leucine-rich repeat proteoglycans (SLRPs), a class of regulatory molecules responsible for collagen organization and maturation, may be one such therapeutic to improve tendon repair.
View Article and Find Full Text PDFObjective: Expression of the de-adhesive extracellular matrix protein tenascin-C (TNC) is associated with the early postnatal development of articular cartilage which is both load-dependent and associated with chondrocyte differentiation. We assessed morphological changes in the articular cartilage of TNC deficient mice at postnatal ages of 1, 4 and 8 weeks compared to age-matched wildtype mice.
Results: Cartilage integrity was assessed based on hematoxylin and eosin stained-sections from the tibial bone using a modified Mankin score.
A healthy gastrointestinal (GI) tract with a properly established microbiota is necessary for a foal to develop into a healthy weanling. A foal's health can be critically impacted by aberrations in the microbiome such as with diarrhea which can cause great morbidity and mortality in foals. In this study, we hypothesized that gut establishment in the foal transitioning from a diet of milk to a diet of grain, forage, and pasture would be detectable through analyses of the fecal microbiotas.
View Article and Find Full Text PDFConventional broiler diets include synthetic methionine to optimize fast muscle growth. Recently, a conventional synthetic methionine-rich diet was compared to alternative diet regimens providing natural sources of methionine. Broilers fed diets with natural methionine sources grew at a slightly slower rate.
View Article and Find Full Text PDFProgenitor cells of the tendon proper and peritenon have unique properties that could impact their utilization in tendon repair strategies. While a few markers have been found to aid in distinguishing progenitors cells from each region, there is great value in identifying more markers. In this study, we hypothesized that RNAseq could be used to improve our understanding of those markers that define these cell types.
View Article and Find Full Text PDFInjury adversely impacts the structure and mechanical properties of a tendon, thus causing pain and disability. Previously, we demonstrated that patellar tendons in mature (P150) and aged (P300) mice do not recover original functionality, even 6 weeks after injury, and that uninjured geriatric tendons (P570) are functionally inferior to uninjured mature tendons. In this study, we hypothesized that the repair response in injured geriatric mice would be further compromised, thus undermining patellar tendon function post-injury.
View Article and Find Full Text PDFThe transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function.
View Article and Find Full Text PDFIntroduction: Multipotent progenitor populations exist within the tendon proper and peritenon of the Achilles tendon. Progenitor populations derived from the tendon proper and peritenon are enriched with distinct cell types that are distinguished by expression of markers of tendon and vascular or pericyte origins, respectively. The objective of this study was to discern the unique tenogenic properties of tendon proper- and peritenon-derived progenitors within an in vitro model.
View Article and Find Full Text PDFMutant mouse models are valuable resources for the study of tendon and ligament biology. Many mutant mouse models are used because their manifested phenotypes mimic clinical pathobiology for several heritable disorders, such as Ehlers-Danlos Syndrome and Osteogenesis Imperfecta. Moreover, these models are helpful for discerning roles of specific genes in the development, maturation, and repair of musculoskeletal tissues.
View Article and Find Full Text PDFTendons and ligaments are connective tissues that guide motion, share loads, and transmit forces in a manner that is unique to each as well as the anatomical site and biomechanical stresses to which they are subjected. Collagens are the major molecular components of both tendons and ligaments. The hierarchical structure of tendon and its functional properties are determined by the collagens present, as well as their supramolecular organization.
View Article and Find Full Text PDFLeopard complex spotting is a group of white spotting patterns in horses caused by an incompletely dominant gene (LP) where homozygotes (LP/LP) are also affected with congenital stationary night blindness. Previous studies implicated Transient Receptor Potential Cation Channel, Subfamily M, Member 1 (TRPM1) as the best candidate gene for both CSNB and LP. RNA-Seq data pinpointed a 1378 bp insertion in intron 1 of TRPM1 as the potential cause.
View Article and Find Full Text PDF