Genetically engineered (GE) cotton event MON 88702, producing Mpp51Aa2 (previously mCry51Aa2) from Bacillus thuringiensis (Bt), controls sucking pests, such as Lygus spp. (Hemiptera: Miridae) and thrips (Thysanoptera). Ingesting high doses of the insecticidal protein resulted in adverse effects on life table parameters of beneficial, predatory Orius spp.
View Article and Find Full Text PDFWhile transgenic () maize provides pest resistance and a reduced application of chemical pesticides, a comprehensive environmental risk assessment is mandatory before its field release. This research determined the concentrations of protein in plant tissue and in arthropods under field conditions in Gongzhuling City, northeastern China, to provide guidance for the selection of indicator species for non-target risk assessment studies. maize expressing Cry1Ab/2Aj and non-transformed near-isoline were grown under identical environmental and agricultural conditions.
View Article and Find Full Text PDFGenetic modification of apple cultivars through cisgenesis can introduce traits, such as disease resistance from wild relatives, quickly and without crossing. This approach was used to generate the cisgenic apple line C44.4.
View Article and Find Full Text PDFObjectives: To assess potential non-target effects of genetically engineered/modified (GM) maize that produces insecticidal proteins from Bacillus thuringiensis (Bt), numerous field experiments have been conducted worldwide. Field data are often variable and influenced by uncontrolled factors and meta-analyses can recognize general effects with increased statistical power compared to individual studies. This database represents a comprehensive collection of experimental field data on non-target invertebrates in Bt and non-Bt maize.
View Article and Find Full Text PDFBackground: Hundreds of studies on environmental effects of genetically modified (GM) crops became available over the past 25 years. For maize producing insecticidal proteins from Bacillus thuringiensis (Bt), potential adverse effects on non-target organisms are a major area of concern and addressed in risk assessments. Reviews and meta-analyses have helped various stakeholders to address uncertainties regarding environmental impacts of the technology.
View Article and Find Full Text PDFEnviron Toxicol Chem
April 2022
Material from genetically engineered maize producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) may enter aquatic ecosystems and expose nontarget organisms. We investigated the effects on life table parameters of the midge Chironomus riparius (Diptera: Chironomidae) of SmartStax maize leaves, which contain six different Cry proteins targeting Lepidoptera and Coleoptera pests, in two plant backgrounds. For midge development and emergence, 95% confidence intervals for the means of six conventional maize lines (Rheintaler, Tasty Sweet, ES-Eurojet, Planoxx, EXP 258, and EXP 262), were used to capture the natural range of variation.
View Article and Find Full Text PDFPrevious studies reported adverse effects of genetically engineered maize that produces insecticidal Cry proteins from Bacillus thuringiensis (Bt) on the water flea Daphnia magna. In the current study, effects of flour, leaves, or pollen from stacked Bt maize that contains six Bt proteins (SmartStax) in two plant backgrounds on life table parameters of D. magna were investigated.
View Article and Find Full Text PDFNon-target effects of genetically engineered (GE) plants on aquatic Daphnia magna have been studied by feeding the species with different maize materials containing insecticidal Cry proteins from Bacillus thuringiensis (Bt). The results of those studies were often difficult to interpret, because only one GE plant was compared to one related non-GE control. In such a setting, effects of the Cry proteins cannot be distinguished from plant background effects, in particular when the test species is nutritionally stressed.
View Article and Find Full Text PDFInsecticidal Cry proteins from Bacillus thuringiensis (Bt) can be transferred from genetically engineered crops to herbivores to natural enemies. For the lady beetle Harmonia axyridis, we investigated potential uptake of Cry proteins from the gut to the body and intergenerational transfer. Third and fourth instar H.
View Article and Find Full Text PDFConcerns have been raised that multiple insecticidal proteins produced by genetically engineered (GE) crops may interact unexpectedly and pose new threats to biodiversity and nontarget organisms. We reviewed the literature to assess whether this concern is justified and whether the current regulatory framework needs to be adapted to address this concern.
View Article and Find Full Text PDFWinter wheat expressing the sucrose transporter from barley (HOSUT) has an increased yield potential. Genetic engineering should improve cultivars without increasing susceptibility to biotic stresses or causing negative impacts on ecosystem services. We studied the effects of HOSUT wheat on cereal aphids that feed on the sugar-rich phloem sap.
View Article and Find Full Text PDFBackground: Besides fibers, cotton plants also produce a large amount of seeds with a high oil and protein content. The use of these seeds is restricted by their high contents of the terpenoid gossypol, which is harmful to humans and livestock. Using a genetic engineering approach, "Ultra-low gossypol cottonseed" (ULGCS) plants were produced by knocking down an enzyme that catalyzes the formation of a precursor of gossypol.
View Article and Find Full Text PDFAs the global population continues to expand, utilizing an integrated approach to pest management will be critically important for food security, agricultural sustainability, and environmental protection. Genetically engineered (GE) crops that provide protection against insects and diseases, or tolerance to herbicides are important tools that complement a diversified integrated pest management (IPM) plan. However, despite the advantages that GE crops may bring for simplifying the approach and improving efficiency of pest and weed control, there are also challenges for successful implementation and sustainable use.
View Article and Find Full Text PDFPhytochemical defense responses of plants are often herbivore-specific and can be affected by a herbivore's feeding mode. However, comprehensive studies documenting the impact of multiple herbivores from different feeding guilds on induced phytochemical responses in distal leaves and its consequences for plant-mediated herbivore interactions are limited and findings are inconsistent. We investigated how herbivory by leaf-chewing caterpillars, cell-content feeding spider mites and phloem-feeding aphids and whiteflies affect secondary metabolomes and phytohormone levels in youngest, non-damaged cotton leaves (distal leaves).
View Article and Find Full Text PDFPlant Biotechnol J
October 2018
Genetically engineered (GE) rice lines expressing Lepidoptera-active insecticidal cry genes from the bacterium Bacillus thuringiensis (Bt) have been developed in China. Field surveys indicated that Bt rice harbours fewer rice planthoppers than non-Bt rice although planthoppers are not sensitive to the produced Bt Cry proteins. The mechanisms underlying this phenomenon remain unknown.
View Article and Find Full Text PDFFront Plant Sci
February 2018
In the agroecosystem, genetically engineered plants producing insecticidal Cry proteins from (Bt) interact with non-target herbivores and other elements of the food web. Stacked Bt crops expose herbivores to multiple Cry proteins simultaneously. In this study, the direct interactions between SmartStax Bt maize producing six different Cry proteins and two herbivores with different feeding modes were investigated.
View Article and Find Full Text PDFAlthough genetically engineered crops producing insecticidal Cry proteins from Bacillus thuringiensis (Bt) are grown worldwide, few studies cover effects of Bt crops or Cry proteins on dipteran species in an agricultural context. We tested the toxicity of six purified Cry proteins and of Bt cotton and Bt maize tissue on Drosophila melanogaster (Diptera: Drosophilidae) as a surrogate for decomposing Diptera. ELISA confirmed the presence of Cry proteins in plant material, artificial diet, and fly larvae, and concentrations were estimated.
View Article and Find Full Text PDFGenetically engineered (GE) crops with stacked insecticidal traits expose arthropods to multiple Cry proteins from (Bt). One concern is that the different Cry proteins may interact and lead to unexpected adverse effects on non-target species. Bi- and tri-trophic experiments with SmartStax maize, herbivorous spider mites (), aphids (), predatory spiders (), ladybeetles () and lacewings () were conducted.
View Article and Find Full Text PDFWith the cultivation of Bt cotton, the produced insecticidal Cry proteins are ingested by herbivores and potentially transferred along the food chain to natural enemies, such as predators. In laboratory experiments with Bollgard II cotton, concentrations of Cry1Ac and Cry2Ab were measured in Lepidoptera larvae (Spodoptera littoralis, Heliothis virescens), plant bugs (Euschistus heros), aphids (Aphis gossypii), whiteflies (Bemisia tabaci), thrips (Thrips tabaci, Frankliniella occidentalis), and spider mites (Tetranychus urticae). Tritrophic experiments were conducted with caterpillars of S.
View Article and Find Full Text PDFBt rice can control yield losses caused by lepidopteran pests but may also harm nontarget species and reduce important ecosystem services. A comprehensive data set on herbivores, natural enemies, and their interactions in Chinese rice fields was compiled. This together with an analysis of the Cry protein content in arthropods collected from Bt rice in China indicated which nontarget species are most exposed to the insecticidal protein and should be the focus of regulatory risk assessment.
View Article and Find Full Text PDFIn its defense against herbivores, cotton ( sp.) relies in part on the production of a set of inducible, non-volatile terpenoids. Under uniform damage levels, allocation of induced cotton terpenoids has been found to be highest in youngest leaves, supporting assumptions of the optimal defense theory (ODT) which predicts that plants allocate defense compounds to tissues depending on their value and the likelihood of herbivore attack.
View Article and Find Full Text PDFBackground: Insect-resistant transgenic plants that express insecticidal Cry proteins from Bacillus thuringiensis (Bt) are grown on millions of hectares worldwide. While these proteins are efficient in controlling key lepidopteran pests, not all pests are affected and the development of resistance in target pests is always a concern. These shortcomings could be addressed by exploiting the natural insect resistance of cotton, especially inducible terpenoids such as gossypol.
View Article and Find Full Text PDFPotentially adverse effects on ecosystem functioning by the planting of insect-resistant, genetically engineered plants or by the direct application of insecticidal compounds are carefully evaluated in pre-market risk assessments. To date, few studies have assessed the potential risks of genetically engineered crops or insecticidal compounds on the survival and fitness of dipteran species, despite their important contribution to ecosystem services such as decomposition in agricultural systems. Therefore, we propose that Drosophila melanogaster Meigen (Drosophilidae) be used as a surrogate species for the order Diptera and for the functional guild of soil arthropod decomposers in pre-market risk assessments.
View Article and Find Full Text PDF