Volumetric muscle loss (VML) injuries are the result of extreme trauma from battlefield injuries, tumor ablations, and other physical traumas such as car crash injuries. The abrupt loss of muscle restricts the tissue's remaining regenerative capacity, leading to loss of satellite cells, peripheral nerve connections, and aberrant fibrosis. Prior research from our lab demonstrated that decellularized muscle matrix (DMM) supported regeneration of de novo fibers within the graft.
View Article and Find Full Text PDF: Volumetric muscle loss results in intramuscular axotomy, denervating muscle distal to the injury and leading to paralysis, denervation, and loss of muscle function. Once the nerve is damaged, paralyzed skeletal muscle will atrophy and accumulate noncontractile connective tissue. The objective of this study was to determine differences in connective tissue, atrophy, and inflammatory signaling between two paralysis models, botulinum toxin (Botox), which blocks acetylcholine transmission while keeping nerves intact, and neurectomy, which eliminates all nerve-to-muscle signaling.
View Article and Find Full Text PDFImmobilization-induced skeletal unloading results in muscle atrophy and rapid bone loss, thereby increasing the risk of falling and the need for implant therapy in patients with extended bed rest or neuromuscular injuries. Skeletal unloading causes bone loss by altering bone growth and resorption, suggesting that implant performance might be affected. To test this, we focused on early events in implant osseointegration.
View Article and Find Full Text PDFAdvanced glycation end-products (AGEs) stochastically accrue in skeletal muscle and on collagen over an individual's lifespan, stiffening the muscle and modifying the stem cell (MuSC) microenvironment while promoting proinflammatory, antiregenerative signaling via the receptor for advanced glycation end-products (RAGEs). In the present study, a novel in vitro model was developed of this phenomenon by cross linking a 3-D collagen scaffold with AGEs and investigating how myoblasts responded to such an environment. Briefly, collagen scaffolds were incubated with d-ribose (0, 25, 40, 100, or 250 mM) for 5 days at 37°C.
View Article and Find Full Text PDFReduced skeletal loading associated with many conditions, such as neuromuscular injuries, can lead to bone fragility and may threaten the success of implant therapy. Our group has developed a botulinum toxin A (botox) injection model to imitate disease-reduced skeletal loading and reported that botox dramatically impaired the bone formation and osseointegration of titanium implants. Semaphorin 3A (sema3A) is an osteoprotective factor that increases bone formation and inhibits bone resorption, indicating its potential therapeutic role in improving osseointegration in vivo.
View Article and Find Full Text PDFTransfection of chondrocytes with microRNA-451(miR-451), present in growth zone cartilage of the growth plate, upregulates production of enzymes association with extracellular matrix degradation. miR-451 is also present in articular cartilage and exacerbates IL-1β effects in articular chondrocytes. Moreover, when osteoarthritis (OA) was induced in Sprague Dawley rats via bilateral anterior cruciate ligament transection (ACLT), miR-451 expression was increased in OA cartilage compared to control, suggesting its inhibition might be used to prevent or treat OA.
View Article and Find Full Text PDFVolumetric muscle loss (VML) is the acute loss of muscle mass due to trauma. Such injuries occur primarily in the extremities and are debilitating, as there is no clinical treatment to restore muscle function. Pro-inflammatory advanced glycation end-products (AGEs) and the soluble receptor for advanced glycation end-products (RAGE) are known to increase in acute trauma patient's serum and are correlated with increased injury severity.
View Article and Find Full Text PDFAdvanced age causes skeletal muscle to undergo deleterious changes including muscle atrophy, fast-to-slow muscle fiber transition, and an increase in collagenous material that culminates in the age-dependent muscle wasting disease known as sarcopenia. Advanced glycation end-products (AGEs) non-enzymatically accumulate on the muscular collagens in old age via the Maillard reaction, potentiating the accumulation of intramuscular collagen and stiffening the microenvironment through collagen cross-linking. This review contextualizes known aspects of skeletal muscle extracellular matrix (ECM) aging, especially the role of collagens and AGE cross-linking, and underpins the motor nerve's role in this aging process.
View Article and Find Full Text PDFJ Musculoskelet Neuronal Interact
September 2021
Objective: To examine whether genetic variability plays a role in skeletal muscle response to disuse.
Methods: We examined skeletal muscle response to disuse in five different strains of mice: CAST/EiJ, NOD/ShiLtJ, NZO/HILtJ, 129S1/SvImJ and A/J. Mice had one limb immobilized by a cast for three weeks.
Decellularized tissues are biocompatible materials that engraft well, but the age of their source has not been explored for clinical translation. Advanced glycation end products (AGEs) are chemical cross-links that accrue on skeletal muscle collagen in old age, stiffening the matrix and increasing inflammation. Whether decellularized biomaterials derived from aged muscle would suffer from increased AGE collagen cross-links is unknown.
View Article and Find Full Text PDFMetabolic bone is highly innervated by both sensory and sympathetic nerves. In addition to skeletal development, neural regulation participates in local bone remodeling, which is important for successful osseointegration of titanium implants. Neurectomy is a model used to investigate the lack of neural function on bone homeostasis, but the relative impacts of direct denervation to bone or denervation-induced muscle paralysis are less well defined.
View Article and Find Full Text PDFMatrix vesicles (MVs) are extracellular organelles produced by growth plate cartilage cells in a zone-specific manner. MVs are similar in size to exosomes, but they are tethered to the extracellular matrix (ECM) via integrins. Originally associated with matrix calcification, studies now show that they contain matrix processing enzymes and microRNA that are specific to their zone of maturation.
View Article and Find Full Text PDFBackground: Platelet-rich-plasma (PRP) is used to treat knee osteoarthritis; however, mechanistic evidence of PRP effectiveness for pain relief is limited.
Objective: To assess molecular biomarkers and mesenchymal stem cells (MSCs) in synovial fluid during PRP treatment of the osteoarthritic knee joint.
Design: Single blinded, randomized, placebo controlled pilot study.
Products developed for skeletal muscle regeneration frequently incorporate allogeneic and xenogeneic materials to elicit a regenerative response to heal skeletal muscle wounds. To avoid graft rejection in preclinical studies, immunodeficient rodents are used. Whether the immunodeficiency alters the host response to the material in skeletal muscle has not been studied.
View Article and Find Full Text PDFAm J Physiol Cell Physiol
June 2019
Regenerative medicine treatments for severe skeletal muscle injuries are limited, resulting in persistent functional deficits. Clinical options include neglecting the wound with the expectation that fibrosis will develop or using an autologous muscle graft with minimal functional improvement. A regenerative matrix can be used, but muscle fiber development on these matrices remains a challenge in vivo.
View Article and Find Full Text PDFImplanted polymer scaffolds can induce inflammation leading to the foreign body response (FBR), fibrosis, and implant failure. Thus, it is important to understand how immune cells interact with scaffolds to mitigate inflammation and promote a regenerative response. We previously demonstrated that macrophage phenotype is modulated by fiber and pore diameters of an electrospun scaffold.
View Article and Find Full Text PDFVolumetric muscle loss is debilitating and involves extensive rehabilitation. One approach to accelerate healing, rehabilitation, and muscle function is to repair damaged skeletal muscle using regenerative medicine strategies. In sports medicine and orthopedics, a common clinical approach is to treat minor to severe musculoskeletal injuries with platelet-rich plasma (PRP) injections.
View Article and Find Full Text PDFChondrocytes at different maturation states in the growth plate produce matrix vesicles (MVs), membrane organelles found in the extracellular matrix, with a wide range of contents, such as matrix processing enzymes and receptors for hormones. We have shown that MVs harvested from growth zone (GC) chondrocyte cultures contain abundant small RNAs, including miRNAs. Here, we determined whether RNA also exists in MVs produced by less mature resting zone (RC) chondrocytes and, if so, whether it differs from the RNA in MVs produced by GC cells.
View Article and Find Full Text PDFCurrent strategies to treat volumetric muscle loss use primarily pedicle or free muscle transfers, but these grafts fail to adequately regenerate functional tissue. Decellularized soft tissue grafts possess physical and chemical cues to promote muscle regeneration, suggesting their potential for use in large muscle defects. In this study, we developed a decellularized muscle matrix (DMM) graft using rat gastrocnemius.
View Article and Find Full Text PDFDifferent plant feeders, including insects and parasitic nematodes, can influence each other by triggering systemic changes in their shared host plants. In most cases, however, the underlying mechanisms are unclear, and the consequences for plant fitness are not well understood. We studied the interaction between leaf feeding Manduca sexta caterpillars and root parasitic nematodes in Nicotiana attenuata.
View Article and Find Full Text PDFEndochondral bone formation is a precise and highly ordered process whose exact regulatory framework is still being elucidated. Multiple regulatory pathways are known to be involved. In some cases, regulation impacts gene expression, resulting in changes in chondrocyte phenotypic expression and extracellular matrix synthesis.
View Article and Find Full Text PDFThis epidemiologic study follows a 5-yr-old male African elephant ( Loxodonta africana ) during an episode of hemorrhagic disease (HD) due to elephant endotheliotropic herpesvirus 3B (EEHV3B) utilizing data from complete blood counts, electrophoresis and acute phase protein analysis, and polymerase chain reaction (PCR) of multiple body fluids during and after the clinical episode. The elephant presented with sudden onset of marked lethargy and inappetence followed by hypersalivation, hyperemia of the conjunctivae and focally on the tongue, and swellings on the head and ventrum. A moderate leukocytopenia with band neutrophilia, lymphopenia, monocytopenia, and thrombocytophilia was followed by a rise in all three cell types by day 10.
View Article and Find Full Text PDFJ Biomed Mater Res A
September 2017
Regulating soft tissue repair to prevent fibrosis and promote regeneration is central to creating a microenvironment conducive to soft tissue development. Macrophages play an important role in this process. The macrophage response can be modulated using biomaterials, altering cytokine and growth factor secretion to promote regeneration.
View Article and Find Full Text PDFUnlabelled: The aligned structural environment in skeletal muscle is believed to be a crucial component in functional muscle regeneration. Myotube formation is increased on aligned biomaterials, but we do not fully understand the mechanisms that direct this enhanced fusion. Previous studies indicate that the α7 integrin subunit is upregulated during myoblast differentiation, suggesting that signaling via α7β1 mediates the effect of alignment.
View Article and Find Full Text PDFHCV NS5B polymerase inhibitor GSK852A (1) was synthesized in only five steps from ethyl 4-fluorobenzoylacetate (3) in 46% overall yield. Key to the efficient route was the synthesis of the highly functionalized benzofuran core 15 from the β-keto ester in one pot and the efficient conversion of ester 6 to amide 19 via enamine lactone 22. Serendipitous events led to identification of the isolable enamine lactone intermediate 22.
View Article and Find Full Text PDF