Building upon previous experiments can be used to accomplish new goals. In computing, it is imperative to reuse computer code to continue development on specific projects. Reproducibility is a fundamental building block in science, and experimental reproducibility issues have recently been of great concern.
View Article and Find Full Text PDFMotivation: Whole genome shotgun based next-generation transcriptomics and metagenomics studies often generate 100-1000 GB sequence data derived from tens of thousands of different genes or microbial species. Assembly of these data sets requires tradeoffs between scalability and accuracy. Current assembly methods optimized for scalability often sacrifice accuracy and vice versa.
View Article and Find Full Text PDFThis paper describes our on-going work to accelerate ZENO, a software tool based on Monte Carlo methods (MCMs), used for computing material properties at nanoscale. ZENO employs three main algorithms: (1) Walk on Spheres (WoS), (2) interior sampling, and (3) surface sampling. We have accelerated the first two algorithms.
View Article and Find Full Text PDFWe developed a model describing the structure and contractile mechanism of the actomyosin ring in fission yeast, Schizosaccharomyces pombe. The proposed ring includes actin, myosin, and α-actinin, and is organized into a structure similar to that of muscle sarcomeres. This structure justifies the use of the sliding-filament mechanism developed by Huxley and Hill, but it is probably less organized relative to that of muscle sarcomeres.
View Article and Find Full Text PDFDielectric continuum or implicit solvent models provide a significant reduction in computational cost when accounting for the salt-mediated electrostatic interactions of biomolecules immersed in an ionic environment. These models, in which the solvent and ions are replaced by a dielectric continuum, seek to capture the average statistical effects of the ionic solvent, while the solute is treated at the atomic level of detail. For decades, the solution of the three-dimensional Poisson-Boltzmann equation (PBE), which has become a standard implicit-solvent tool for assessing electrostatic effects in biomolecular systems, has been based on various deterministic numerical methods.
View Article and Find Full Text PDFSpontaneous episodic activity is a fundamental mode of operation of developing networks. Surprisingly, the duration of an episode of activity correlates with the length of the silent interval that precedes it, but not with the interval that follows. Here we use a modeling approach to explain this characteristic, but thus far unexplained, feature of developing networks.
View Article and Find Full Text PDFThe biophysical mechanisms underlying the relationship between the structure and function of the KcsA K(+) channel are described. Because of the conciseness of electrodiffusion theory and the computational advantages of a continuum approach, the Nernst-Planck (NP) type models, such as the Goldman-Hodgkin-Katz and Poisson-NP (PNP) models, have been used to describe currents in ion channels. However, the standard PNP (SPNP) model is known to be inapplicable to narrow ion channels because it cannot handle discrete ion properties.
View Article and Find Full Text PDFThe prediction of salt-mediated electrostatic effects with high accuracy is highly desirable since many biological processes where biomolecules such as peptides and proteins are key players can be modulated by adjusting the salt concentration of the cellular milieu. With this goal in mind, we present a novel implicit-solvent based linear Poisson-Boltzmann (PB) solver that provides very accurate nonspecific salt-dependent electrostatic properties of biomolecular systems. To solve the linear PB equation by the Monte Carlo method, we use information from the simulation of random walks in the physical space.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
November 2002
Recent research shows that Monte Carlo diffusion methods are often the most efficient algorithms for solving certain elliptic boundary value problems. In this paper, we extend this research by providing two efficient algorithms based on the concept of "last-passage diffusion." These algorithms are qualitatively compared with each other (and with the best first-passage diffusion algorithm) in solving the classical problem of computing the charge distribution on a conducting disk held at unit voltage.
View Article and Find Full Text PDF