Publications by authors named "Michael Maranda-Robitaille"

Objectives: With the extended indications of transcatheter aortic valve (TAV) replacement (TAVR) to lower-risk patients, there is an increasing number of patients requiring surgical explantation of failed TAV. We sought to describe macroscopic and microscopic features of surgically explanted percutaneous aortic valve prostheses.

Methods: Preoperative and surgical characteristic of patients undergoing surgical explantation of TAV were retrospectively analyzed from 2007 to 2020.

View Article and Find Full Text PDF

Treatment of the cigarette smoke-associated lung diseases, such as chronic obstructive pulmonary disease (COPD), has largely focused on broad-spectrum anti-inflammatory therapies. However, these therapies, such as high-dose inhaled corticosteroids, enhance patient susceptibility to lung infection and exacerbation. Our objective was to assess whether the cationic host defense peptide, human β-defensin 2 (hBD-2), can simultaneously reduce pulmonary inflammation in cigarette smoke-exposed mice while maintaining immune competence during bacterial exacerbation.

View Article and Find Full Text PDF

Vaping is increasingly popular among the young and adult population. Vaping liquids contained in electronic cigarettes (e-cigarettes) are mainly composed of propylene glycol and glycerol, to which nicotine and flavors are added. Among several biological processes, glycerol is a metabolic substrate used for lipid synthesis in fed state as well as glucose synthesis in fasting state.

View Article and Find Full Text PDF

Genetic predispositions and environmental exposures are regarded as the main predictors of respiratory disease development. Although the impact of dietary essential nutrient deficiencies on cardiovascular disease, obesity, and type II diabetes has been widely studied, it remains poorly explored in chronic respiratory diseases. Dietary choline and methionine deficiencies are common in the population, and their impact on pulmonary homeostasis is currently unknown.

View Article and Find Full Text PDF

Smoking alters pulmonary reverse lipid transport and leads to intracellular lipid accumulation in alveolar macrophages. We investigated whether stimulating reverse lipid transport with an agonist of the liver X receptor (LXR) would help alveolar macrophages limit lipid accumulation and dampen lung inflammation in response to cigarette smoke. Mice were exposed to cigarette smoke and treated intraperitoneally with the LXR agonist T0901317.

View Article and Find Full Text PDF

Reverse lipid transport is critical to maintain homeostasis. Smoking causes lipid accumulation in macrophages, therefore suggesting suboptimal reverse lipid transport mechanisms. In this study, we investigated the interplay between smoking and reverse lipid transport and the consequences on smoking-induced lung and peripheral alterations.

View Article and Find Full Text PDF