Continuous exposure to ionizing radiation at a low dose rate poses significant health risks to humans on deep space missions, prompting the need for mechanistic studies to identify countermeasures against its deleterious effects. Mitochondria are a major subcellular locus of radiogenic injury, and may trigger secondary cellular responses through the production of reactive oxygen species (mtROS) with broader biological implications. To determine the contribution of mtROS to radiation-induced cellular responses, we investigated the impacts of protracted γ-ray exposures (IR; 1.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
February 2024
Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function.
View Article and Find Full Text PDFFor missions beyond low Earth orbit to the moon or Mars, space explorers will encounter a complex radiation field composed of various ion species with a broad range of energies. Such missions pose significant radiation protection challenges that need to be solved in order to minimize exposures and associated health risks. An innovative galactic cosmic ray simulator (GCRsim) was recently developed at the NASA Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory (BNL).
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2022
NASA aims to return humans to the moon within the next five years and to land humans on Mars in a few decades. Space radiation exposure represents a major challenge to astronauts' health during long-duration missions, as it is linked to increased risks of cancer, cardiovascular dysfunctions, central nervous system (CNS) impairment, and other negative outcomes. Characterization of radiation health effects and developing corresponding countermeasures are high priorities for the preparation of long duration space travel.
View Article and Find Full Text PDFLife Sci Space Res (Amst)
November 2022
Radiation-induced immune suppression poses significant health challenges for millions of patients undergoing cancer chemotherapy and radiotherapy treatment, and astronauts and space tourists travelling to outer space. While a limited number of recombinant protein therapies, such a Sargramostim, are approved for accelerating hematologic recovery, the pronounced role of granulocyte-macrophage colony-stimulating factor (GM-CSF or CSF2) as a proinflammatory cytokine poses additional challenges in creating immune dysfunction towards pathogenic autoimmune diseases. Here we present an approach to high-throughput drug-discovery, target validation, and lead molecule identification using nucleic acid-based molecules.
View Article and Find Full Text PDFResearch examining the potential for circulating miRNA to serve as markers for preneoplastic lesions or early-stage hepatocellular carcinoma (HCC) is hindered by the difficulties of obtaining samples from asymptomatic individuals. As a surrogate for human samples, we identified hub miRNAs in gene co-expression networks using HCC-bearing C3H mice. We confirmed 38 hub miRNAs as associated with HCC in F2 hybrid mice derived from radiogenic HCC susceptible and resistant founders.
View Article and Find Full Text PDFThe space radiation environment consists of multiple species of charged particles, including Si ions, that may impact brain function during and following missions. To develop biomarkers of the space radiation response, BALB/c and C3H female and male mice and their F2 hybrid progeny were irradiated with Si ions (350 MeV/n, 0.2 Gy) and tested for behavioral and cognitive performance 1, 6, and 12 months following irradiation.
View Article and Find Full Text PDFHigh-charge, high-energy ion particle (HZE) radiations are extraterrestrial in origin and characterized by high linear energy transfer (high-LET), which causes more severe cell damage than low-LET radiations like γ-rays or photons. High-LET radiation poses potential cancer risks for astronauts on deep space missions, but the studies of its carcinogenic effects have relied heavily on animal models. It remains uncertain whether such data are applicable to human disease.
View Article and Find Full Text PDFDuring space missions, astronauts experience acute and chronic low-dose-rate radiation exposures. Given the clear gap of knowledge regarding such exposures, we assessed the effects acute and chronic exposure to a mixed field of neutrons and photons and single or fractionated simulated galactic cosmic ray exposure (GCRsim) on behavioral and cognitive performance in mice. In addition, we assessed the effects of an aspirin-containing diet in the presence and absence of chronic exposure to a mixed field of neutrons and photons.
View Article and Find Full Text PDFPurpose: Estimating cancer risk associated with interplanetary space travel is complicated. Human exposure data to high atomic number, high-energy (HZE) radiation is lacking, so data from low linear energy transfer (low-LET) γ-ray radiation is used in risk models, with the assumption that HZE and γ-ray radiation have comparable biological effects. This assumption has been challenged by reports indicating that HZE radiation might produce more aggressive tumors.
View Article and Find Full Text PDFThe overall aim of this contribution to the 'Second Bill Morgan Memorial Special Issue' is to provide a high-level review of a recent report developed by a Committee for the National Council on Radiation Protection and Measurements (NCRP) titled 'Approaches for Integrating Information from Radiation Biology and Epidemiology to Enhance Low-Dose Health Risk Assessment'. It derives from previous NCRP Reports and Commentaries that provide the case for integrating data from radiation biology studies (available and proposed) with epidemiological studies (also available and proposed) to develop Biologically-Based Dose-Response (BBDR) models. In this review, it is proposed for such models to leverage the adverse outcome pathways (AOP) and key events (KE) approach for better characterizing radiation-induced cancers and circulatory disease (as the example for a noncancer outcome).
View Article and Find Full Text PDFTo simulate the space radiation environment astronauts are exposed to, most studies involve acute exposures but during a space mission there will be chronic (long-lasting) exposures. To address this knowledge gap, a neutron irradiator using a Cf (Californium) source was used to generate a mixed field of neutrons and photons to simulate chronic, low dose rate exposures to high LET radiation. In the present study, we assessed the effects chronic neutron exposure starting at 60 days of age on behavioral and cognitive performance of BALB/c female and C3H male mice at 600 and 700 days of age as part of an opportunistic study that took advantage of the availability of neutron and sham-irradiated mice from a radiation carcinogenesis experiment.
View Article and Find Full Text PDFPurpose: During extended missions into deep space, astronauts will be exposed to a complex radiation field that includes high linear energy transfer (LET) radiation from high energy, heavy ions (HZE particles) at low dose rates of about 0.5 mGy/d for long durations. About 20% of the dose is delivered by ions with LET greater than 10 keV/m.
View Article and Find Full Text PDFThe risk of developing radiation-induced lung cancer differs between different strains of mice, but the underlying cause of the strain differences is unknown. Strains of mice also differ in how quickly they repair radiation-induced DNA double-strand breaks (DSBs). We assayed mouse strains from the CcS/Dem recombinant congenic strain set for their efficacy in repairing DNA DSBs during protracted irradiation.
View Article and Find Full Text PDFBehavioral and cognitive traits have a genetic component even though contributions from individual genes and genomic loci are in many cases modest. Changes in the environment can alter genotype-phenotype relationships. Space travel, which includes exposure to ionizing radiation, constitutes environmental challenges and is expected to induce not only dramatic behavioral and cognitive changes but also has the potential to induce physical DNA damage.
View Article and Find Full Text PDFDuring spaceflight, crewmembers are subjected to biomechanical and biological challenges including microgravity and radiation. In the skeleton, spaceflight leads to bone loss, increasing the risk of fracture. Studies utilizing hindlimb suspension (HLS) as a ground-based model of spaceflight often neglect the concomitant effects of radiation exposure, and even when radiation is accounted for, it is often delivered at a high-dose rate over a very short period of time, which does not faithfully mimic spaceflight conditions.
View Article and Find Full Text PDFBackground: Some highly penetrant familial cancer syndromes exhibit elevated leukaemia risk, and there is evidence for familial clustering of lung cancer and other common cancers. Lung cancer and leukaemia are strongly radiogenic, but there are few indications that high-energy beam irradiation is markedly more effective than lower-energy radiation.
Methods: We used a Cox model with familially structured random effects to assess 16 mortality end points in a group of 1850 mice in 47 families maintained in a circular-breeding scheme, exposed to accelerated Si or Fe ions (0.
Individuals differ in their susceptibility to radiogenic cancers, and there is evidence that this inter-individual susceptibility extends to HZE ion-induced carcinogenesis. Three components of individual risk: sex, age at exposure, and prior tobacco use, are already incorporated into the NASA cancer risk model used to determine safe days in space for US astronauts. Here, we examine other risk factors that could potentially be included in risk calculations.
View Article and Find Full Text PDFHuman exposure to ionizing radiation is highly associated with adverse health effects, including reduced hematopoietic cell function and increased risk of carcinogenesis. The hematopoietic deficits manifest across blood cell types and persist for years after radiation exposure, suggesting a long-lived and multi-potent cellular reservoir for radiation-induced effects. As such, research has focused on identifying both the immediate and latent hematopoietic stem cell responses to radiation exposure.
View Article and Find Full Text PDFCancer is an important long-term risk for astronauts exposed to protons and high-energy charged particles during travel and residence on asteroids, the moon, and other planets. NASA's Biomedical Critical Path Roadmap defines the carcinogenic risks of radiation exposure as one of four type I risks. A type I risk represents a demonstrated, serious problem with no countermeasure concepts, and may be a potential "show-stopper" for long duration spaceflight.
View Article and Find Full Text PDFPurpose: To investigate differences in tumor histotype, incidence, latency, and strain susceptibility in mice exposed to single-dose or clinically relevant, fractioned-dose γ-ray radiation.
Methods And Materials: C3Hf/Kam and C57BL/6J mice were locally irradiated to the right hindlimb with either single large doses between 10 and 70 Gy or fractionated doses totaling 40 to 80 Gy delivered at 2-Gy/d fractions, 5 d/wk, for 4 to 8 weeks. The mice were closely evaluated for tumor development in the irradiated field for 800 days after irradiation, and all tumors were characterized histologically.
Estimates of cancer risks posed to space-flight crews by exposure to high atomic number, high-energy (HZE) ions are subject to considerable uncertainty because epidemiological data do not exist for human populations exposed to similar radiation qualities. We assessed the carcinogenic effects of 300 MeV/n 28Si or 600 MeV/n 56Fe ions in a mouse model for radiation-induced acute myeloid leukemia and hepatocellular carcinoma. C3H/HeNCrl mice were irradiated with 0.
View Article and Find Full Text PDF