Publications by authors named "Michael M Wang"

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels.

View Article and Find Full Text PDF

How CD4 lineage gene expression is initiated in differentiating thymocytes remains poorly understood. Here, we show that the paralog transcription factors Zfp281 and Zfp148 control both this process and cytokine expression by T helper cell type 2 (T2) effector cells. Genetic, single-cell, and spatial transcriptomic analyses showed that these factors promote the intrathymic CD4 T cell differentiation of class II major histocompatibility complex (MHC II)-restricted thymocytes, including expression of the CD4 lineage-committing factor Thpok.

View Article and Find Full Text PDF

Lacunar infarcts and vascular dementia are important phenotypic characteristics of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, the most common inherited cerebral small vessel disease. Individuals with the disease show variability in the nature and onset of symptoms and rates of progression, which are only partially explained by differences in pathogenic mutations in the gene. Recognizing the disease early in its course and securing a molecular diagnosis are important clinical goals, despite the lack of proven disease-modifying treatments.

View Article and Find Full Text PDF

Antibodies raised in peptide-immunized rabbits have been used in biological research for decades. Although there has been wide implementation of this approach, specific proteins are occasionally difficult to target for multiple reasons. One consideration that was noted in mice is that humoral responses may preferentially target the carboxyl terminus of the peptide sequence which is not present in the intact protein.

View Article and Find Full Text PDF

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is a cerebral small vessel disease that results from mutations in NOTCH3. How mutations in NOTCH3 ultimately result in disease is not clear, although there is a predilection for mutations to alter the number of cysteines of the gene product, supporting a model in which alterations of conserved disulfide bonds of NOTCH3 drives the disease process. We have found that recombinant proteins with CADASIL NOTCH3 EGF domains 1 to 3 fused to the C terminus of Fc are distinguished from wildtype proteins by slowed mobility in nonreducing gels.

View Article and Find Full Text PDF

The brain is assumed to be hypoactive during cardiac arrest. However, animal models of cardiac and respiratory arrest demonstrate a surge of gamma oscillations and functional connectivity. To investigate whether these preclinical findings translate to humans, we analyzed electroencephalogram and electrocardiogram signals in four comatose dying patients before and after the withdrawal of ventilatory support.

View Article and Find Full Text PDF

Cerebral small vessel disease (CSVD) has emerged as a common factor driving age-dependent diseases, including stroke and dementia. CSVD-related dementia will affect a growing fraction of the aging population, requiring improved recognition, understanding, and treatments. This review describes evolving criteria and imaging biomarkers for the diagnosis of CSVD-related dementia.

View Article and Find Full Text PDF

The most common inherited cause of vascular dementia and stroke, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), is caused by mutations in NOTCH3. Post-translationally altered NOTCH3 accumulates in the vascular media of CADASIL arteries in areas of the vessels that exhibit profound cellular degeneration. The identification of molecules that concentrate in the same location as pathological NOTCH3 may shed light on processes that drive cytopathology in CADASIL.

View Article and Find Full Text PDF

Indolethylamine N-methyltransferase (INMT) is a transmethylation enzyme that utilizes the methyl donor S-adenosyl-L-methionine to transfer methyl groups to amino groups of small molecule acceptor compounds. INMT is best known for its role in the biosynthesis of N,N-Dimethyltryptamine (DMT), a psychedelic compound found in mammalian brain and other tissues. In mammals, biosynthesis of DMT is thought to occur via the double methylation of tryptamine, where INMT first catalyzes the biosynthesis of N-methyltryptamine (NMT) and then DMT.

View Article and Find Full Text PDF
Article Synopsis
  • Mutations in a protein called NOTCH3 are linked to a brain disease called CADASIL, which affects small blood vessels in the brain.
  • Scientists found a new way that this NOTCH3 protein can be cut up inside the body, focusing on a specific part called Asp964.
  • This cutting process seems important for how NOTCH3 interacts with other proteins and might help explain how the disease works.
View Article and Find Full Text PDF

Cerebrovascular disease involves a range of conditions including ischemic and hemorrhagic stroke, vascular malformations, and vascular cognitive impairment and dementia (VCID) [...

View Article and Find Full Text PDF

Cysteine oxidation states of extracellular proteins participate in functional regulation and in disease pathophysiology. In the most common inherited dementia, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), mutations in NOTCH3 that alter extracellular cysteine number have implicated NOTCH3 cysteine states as potential triggers of cerebral vascular smooth muscle cytopathology. In this report, we describe a novel property of the second EGF-like domain of NOTCH3: its capacity to alter the cysteine redox state of the NOTCH3 ectodomain.

View Article and Find Full Text PDF
Article Synopsis
  • Cerebral small vessel disease (SVD) is a common problem in older people that can lead to stroke and dementia.*
  • The disease CADASIL, which is inherited, happens due to changes in a protein called NOTCH3 that affect its structure.*
  • Researchers found that these changes lead to more bad connections in the protein and make it less stable, which could be harmful for the brain.*
View Article and Find Full Text PDF

Immunometabolic changes have been shown to be a key factor in determining the immune cell response in disease models. The immunometabolite, itaconate, is produced by aconitate decarboxylase 1 (Acod1) and has been shown to inhibit inflammatory signaling in macrophages. In this study, we explore the role of Acod1 and itaconate in cerebral ischemia/reperfusion injury.

View Article and Find Full Text PDF

Cerebrovascular pathology at the biochemical level has been informed by the study of cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a vascular disorder caused by NOTCH3 mutations. Previous work in CADASIL described N-terminal proteolysis of NOTCH3 generated by specific non-enzymatic cleavage of the first Asp-Pro sequence of the protein. Here, we investigated whether the second Asp-Pro peptide bond (residues 121-122) of NOTCH3 is cleaved in CADASIL.

View Article and Find Full Text PDF

Small vessel disease is a prevalent age-related condition linked to increased risk of dementia and stroke. We investigate the most commonly inherited form, CADASIL, caused by cysteine-involving mutations in NOTCH3. Recent studies highlight accumulation of NOTCH3 N-terminal fragmentation product (NTF) in disease.

View Article and Find Full Text PDF

Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) and cerebral amyloid angiopathy (CAA) are two distinct vascular angiopathies that share several similarities in clinical presentation and vascular pathology. Given the clinical and pathologic overlap, the molecular overlap between CADASIL and CAA was explored. CADASIL and CAA protein profiles from recently published proteomics-based and immuno-based studies were compared to investigate the potential for shared disease mechanisms.

View Article and Find Full Text PDF

Protein sulfhydryl residues participate in key structural and biochemical functions. Alterations in sulfhydryl status, regulated by either reversible redox reactions or by permanent covalent capping, may be challenging to identify. To advance the detection of protein sulfhydryl groups, we describe the production of new Rabbit monoclonal antibodies that react with carbamidomethyl-cysteine (CAM-cys), a product of iodoacetamide (IAM) labeling of protein sulfhydryl residues.

View Article and Find Full Text PDF

Omeprazole is the most commonly used proton pump inhibitor (PPI), a class of medications whose therapeutic mechanism of action involves formation of a disulfide linkage to cysteine residues in the H+/K+ ATPase pump on gastric secretory cells. Covalent linkage between the sole sulfur group of omeprazole and selected cysteine residues of the pump protein results in inhibition of acid secretion in the stomach, an effect that ameliorates gastroesophageal reflux and peptic ulcer disease. PPIs, though useful for specific conditions when used transiently, are associated with diverse untoward effects when used long term.

View Article and Find Full Text PDF

Cerebral small vessel disease is a common condition linked to dementia and stroke. As an age-dependent brain pathology, cerebral SVD may share molecular processes with core neurodegenerative diseases such as Alzheimer's and Parkinson's disease. Many neurodegenerative diseases feature abnormal protein accumulation and aberrant protein folding, resulting in multimerization of specific proteins.

View Article and Find Full Text PDF

A large number of pre-clinical and developmental investigations involve experimental vertebrate animals, of which mice have emerged as a favored organism. Recognition of the differences between humans and mice is essential for assessment of the relevance of animal studies to humans. The primary purpose of this study was to gauge the conservation between human and mouse vascular smooth muscle cell (VSMC) proteins mined from an analysis of the Human Protein Atlas.

View Article and Find Full Text PDF

The small-vessel disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) arises from mutations in the human gene encoding NOTCH3 and results in vascular smooth muscle cell degeneration, stroke, and dementia. However, the structural changes in NOTCH3 involved in CADASIL etiology are unclear. Here, we discovered site-specific fragmentation of NOTCH3 protein in pathologically affected vessels of human CADASIL-affected brains.

View Article and Find Full Text PDF

Cerebral ischemia (stroke) induces injury to the cerebral endothelium that may contribute to parenchymal injury and worsen outcome. This review focuses on current preclinical studies examining how to prevent ischemia-induced endothelial dysfunction. It particularly focuses on targets at the endothelium itself.

View Article and Find Full Text PDF

N,N-dimethyltryptamine (DMT), a psychedelic compound identified endogenously in mammals, is biosynthesized by aromatic-L-amino acid decarboxylase (AADC) and indolethylamine-N-methyltransferase (INMT). Whether DMT is biosynthesized in the mammalian brain is unknown. We investigated brain expression of INMT transcript in rats and humans, co-expression of INMT and AADC mRNA in rat brain and periphery, and brain concentrations of DMT in rats.

View Article and Find Full Text PDF

Background and Purpose- Cardiac telemetry is a routine part of inpatient ischemic stroke/transient ischemic attack evaluation to assess for atrial fibrillation (AF). Yet, tools to assist stroke clinicians in the evaluation of the large quantities of telemetry data are limited. The investigators developed a new method to evaluate electrocardiographic signals, electrocardiomatrix, that was applied to stroke unit telemetry data to determine its feasibility, validity, and usefulness.

View Article and Find Full Text PDF