Publications by authors named "Michael M Scherer"

The understanding of phenomena falling outside the Ginzburg-Landau paradigm of phase transitions represents a key challenge in condensed matter physics. A famous class of examples is constituted by the putative deconfined quantum critical points between two symmetry-broken phases in layered quantum magnets, such as pressurised SrCu(BO). Experiments find a weak first-order transition, which simulations of relevant microscopic models can reproduce.

View Article and Find Full Text PDF

Recently, the twist angle between adjacent sheets of stacked van der Waals materials emerged as a new knob to engineer correlated states of matter in two-dimensional heterostructures in a controlled manner, giving rise to emergent phenomena such as superconductivity or correlated insulating states. Here, we use an ab initio based approach to characterize the electronic properties of twisted bilayer MoS. We report that, in marked contrast to twisted bilayer graphene, slightly hole-doped MoS realizes a strongly asymmetric p-p Hubbard model on the honeycomb lattice, with two almost entirely dispersionless bands emerging due to destructive interference.

View Article and Find Full Text PDF

We employ the nonperturbative functional renormalization group to study models with an O(N(1) ⊕O(N)(2)) symmetry. Here different fixed points exist in three dimensions, corresponding to bicritical and tetracritical behavior induced by the competition of two order parameters. We discuss the critical behavior of the symmetry-enhanced isotropic, the decoupled and the biconical fixed point, and analyze their stability in the N(1),N(2) plane.

View Article and Find Full Text PDF

Using a combination of quantum Monte Carlo simulations, functional renormalization group calculations and mean-field theory, we study the Hubbard model on the Bernal-stacked honeycomb bilayer at half-filling as a model system for bilayer graphene. The free bands consisting of two Fermi points with quadratic dispersions lead to a finite density of states at the Fermi level, which triggers an antiferromagnetic instability that spontaneously breaks sublattice and spin rotational symmetry once local Coulomb repulsions are introduced. Our results reveal an inhomogeneous participation of the spin moments in the ordered ground state, with enhanced moments at the threefold coordinated sites.

View Article and Find Full Text PDF

We review the functional renormalization group (RG) approach to the Bardeen-Cooper-Schrieffer to Bose-Einstein condensation (BCS-BEC) crossover for an ultracold gas of fermionic atoms. Formulated in terms of a scale-dependent effective action, the functional RG interpolates continuously between the atomic or molecular microphysics and the macroscopic physics on large length scales. We concentrate on the discussion of the phase diagram as a function of the scattering length and the temperature, which is a paradigm example for the non-perturbative power of the functional RG.

View Article and Find Full Text PDF