Objectives: Interpretation of body fluid (BF) results is based on published studies and clinical guidelines. The aim of this study is to determine whether the assays from five common commercial vendors produce similar results in BFs for 12 analytes in a BF cohort.
Methods: BFs (n = 25) and serum (n = 5) were analyzed on five instruments (Roche cobas c501, Ortho 5600, Beckman AU5800 and DXI800, Siemens Vista 1500, and Abbott Architect c8000) to measure albumin, amylase, total bilirubin, cholesterol, creatinine, glucose, lactate dehydrogenase (LDH), lipase, total protein, triglycerides, urea nitrogen, and carcinoembryonic antigen.
Background: Immunosuppressant therapeutic drug monitoring (TDM) usually requires outpatient travel to hospitals or phlebotomy sites for venous blood collection; however Mitra® Microsampling Device (MSD) sampling could allow self-collection and shipping of samples to a laboratory for analysis. This study examined the feasibility of using volumetric microsampling by MSD for TDM of tacrolimus (TaC) and cyclosporin A (CsA) in transplant patients, along with their feedback on the process.
Methods: MSD was used to collect TaC and CsA from venous (VB) or capillary (CB) blood.
The extradiol dioxygenases are a large subclass of mononuclear nonheme Fe enzymes that catalyze the oxidative cleavage of catechols distal to their OH groups. These enzymes are important in bioremediation, and there has been significant interest in understanding how they activate O. The extradiol dioxygenase homoprotocatechuate 2,3-dioxygenase (HPCD) provides an opportunity to study this process, as two O intermediates have been trapped and crystallographically defined using the slow substrate 4-nitrocatechol (4NC): a side-on Fe-O-4NC species and a Fe-O-4NC peroxy bridged species.
View Article and Find Full Text PDFThyroid storm or severe thyrotoxicosis results from extreme thyroid hormone elevation. Therapy includes medical management to prevent hormone production, release, recycling, and peripheral conversion while stabilizing adrenergic tone. Thyroid dysfunction is the usual cause but it can be due to excessive thyroid hormone ingestion.
View Article and Find Full Text PDFToxicology is a multidisciplinary study of poisons, aimed to correlate the quantitative and qualitative relationships between poisons and their physiological and behavioural effects in living systems. Other key aspects of toxicology focus on elucidation of the mechanisms of action of poisons and development of remedies and treatment plans for associated toxic effects. In these endeavours, Mass spectrometry (MS) has become a powerful analytical technique with a wide range of application used in the Toxicological analysis of drugs, poisons, and metabolites of both.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2016
Stilbenes are diphenyl ethene compounds produced naturally in a wide variety of plant species and some bacteria. Stilbenes are also derived from lignin during kraft pulping. Stilbene cleavage oxygenases (SCOs) cleave the central double bond of stilbenes, forming two phenolic aldehydes.
View Article and Find Full Text PDFThe extradiol-cleaving dioxygenase homoprotocatechuate 2,3-dioxygenase (HPCD) binds substrate homoprotocatechuate (HPCA) and O2 sequentially in adjacent ligand sites of the active site Fe(II). Kinetic and spectroscopic studies of HPCD have elucidated catalytic roles of several active site residues, including the crucial acid-base chemistry of His200. In the present study, reaction of the His200Cys (H200C) variant with native substrate HPCA resulted in a decrease in both kcat and the rate constants for the activation steps following O2 binding by >400 fold.
View Article and Find Full Text PDFHomoprotocatechuate (HPCA; 3,4-dihydroxyphenylacetate or 4-carboxymethyl catechol) and O(2) bind in adjacent ligand sites of the active site Fe(II) of homoprotocatechuate 2,3-dioxygenase (FeHPCD). We have proposed that electron transfer from the chelated aromatic substrate through the Fe(II) to O(2) gives both substrates radical character. This would promote reaction between the substrates to form an alkylperoxo intermediate as the first step in aromatic ring cleavage.
View Article and Find Full Text PDFSubstrates homoprotocatechuate (HPCA) and O(2) bind to the Fe(II) of homoprotocatechuate 2,3-dioxygenase (FeHPCD) in adjacent coordination sites. Transfer of an electron(s) from HPCA to O(2) via the iron is proposed to activate the substrates for reaction with each other to initiate aromatic ring cleavage. Here, rapid-freeze-quench methods are used to trap and spectroscopically characterize intermediates in the reactions of the HPCA complexes of FeHPCD and the variant His200Asn (FeHPCD−HPCA and H200N−HPCA, respectively) with O(2).
View Article and Find Full Text PDFFe(III)-O(2)*(-) intermediates are well known in heme enzymes, but none have been characterized in the nonheme mononuclear Fe(II) enzyme family. Many steps in the O(2) activation and reaction cycle of Fe(II)-containing homoprotocatechuate 2,3-dioxygenase are made detectable by using the alternative substrate 4-nitrocatechol (4NC) and mutation of the active site His200 to Asn (H200N). Here, the first intermediate (Int-1) observed after adding O(2) to the H200N-4NC complex is trapped and characterized using EPR and Mössbauer (MB) spectroscopies.
View Article and Find Full Text PDF