Publications by authors named "Michael M Magwire"

Epistasis-gene-gene interaction-is common for mutations with large phenotypic effects in humans and model organisms. Epistasis impacts quantitative genetic models of speciation, response to natural and artificial selection, genetic mapping, and personalized medicine. However, the existence and magnitude of epistasis between alleles with small quantitative phenotypic effects are controversial and difficult to assess.

View Article and Find Full Text PDF

Predictive ability derived from gene expression and metabolic information was evaluated using genomic prediction methods based on datasets from a public maize panel. With the rapid development of high throughput biological technologies, information from gene expression and metabolites has received growing attention in plant genetics and breeding. In this study, we evaluated the utility of gene expression and metabolic information for genomic prediction using data obtained from a maize diversity panel.

View Article and Find Full Text PDF

Mutation and natural selection shape the genetic variation in natural populations. Here, we directly estimated the spontaneous mutation rate by sequencing new Drosophila mutation accumulation lines maintained with minimal natural selection. We inferred strong stabilizing natural selection on quantitative traits because genetic variation among wild-derived inbred lines was much lower than predicted from a neutral model and the mutational effects were much larger than allelic effects of standing polymorphisms.

View Article and Find Full Text PDF

Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV).

View Article and Find Full Text PDF

Genetic variation in brain size may provide the basis for the evolution of the brain and complex behaviours. The genetic substrate and the selective pressures acting on brain size are poorly understood. Here we use the Drosophila Genetic Reference Panel to map polymorphic variants affecting natural variation in mushroom body morphology.

View Article and Find Full Text PDF

Understanding how DNA sequence variation is translated into variation for complex phenotypes has remained elusive but is essential for predicting adaptive evolution, for selecting agriculturally important animals and crops, and for personalized medicine. Gene expression may provide a link between variation in DNA sequence and organismal phenotypes, and its abundance can be measured efficiently and accurately. Here we quantified genome-wide variation in gene expression in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP), increasing the annotated Drosophila transcriptome by 11%, including thousands of novel transcribed regions (NTRs).

View Article and Find Full Text PDF

Royal Jelly (RJ) is a product made by honey bee workers and is required for queen differentiation and accompanying changes in queen body size, development time, lifespan and reproductive output relative to workers. Previous studies have reported similar changes in Drosophila melanogaster in response to RJ. Here, we quantified viability, development time, body size, productivity, lifespan and genome wide transcript abundance of D.

View Article and Find Full Text PDF

Pigmentation varies within and between species and is often adaptive. The amount of pigmentation on the abdomen of Drosophila melanogaster is a relatively simple morphological trait, which serves as a model for mapping the genetic basis of variation in complex phenotypes. Here, we assessed natural variation in female abdominal pigmentation in 175 sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel, derived from the Raleigh, NC population.

View Article and Find Full Text PDF

We used 197 Drosophila melanogaster Genetic Reference Panel (DGRP) lines to perform a genome-wide association analysis for virgin female lifespan, using ~2M common single nucleotide polymorphisms (SNPs). We found considerable genetic variation in lifespan in the DGRP, with a broad-sense heritability of 0.413.

View Article and Find Full Text PDF

The genetic underpinnings that contribute to variation in olfactory perception are not fully understood. To explore the genetic basis of variation in olfactory perception, we measured behavioral responses to 14 chemically diverse naturally occurring odorants in 260400 flies from 186 lines of the Drosophila melanogaster Genetic Reference Panel, a population of inbred wild-derived lines with sequenced genomes. We observed variation in olfactory behavior for all odorants.

View Article and Find Full Text PDF

Most organisms exhibit senescence; a decline in physiological function with age. In nature, rates of senescence vary extensively among individuals and this variation has a significant genetic component; however, we know little about the genes underlying senescence. Here we show the first evidence that individual alleles influence fecundity in an age-specific manner and so the genetic basis of natural variation in fecundity changes dramatically with age.

View Article and Find Full Text PDF

The Drosophila melanogaster Genetic Reference Panel (DGRP) is a community resource of 205 sequenced inbred lines, derived to improve our understanding of the effects of naturally occurring genetic variation on molecular and organismal phenotypes. We used an integrated genotyping strategy to identify 4,853,802 single nucleotide polymorphisms (SNPs) and 1,296,080 non-SNP variants. Our molecular population genomic analyses show higher deletion than insertion mutation rates and stronger purifying selection on deletions.

View Article and Find Full Text PDF

Wolbachia are maternally inherited symbiotic bacteria, commonly found in arthropods, which are able to manipulate the reproduction of their host in order to maximise their transmission. The evolutionary history of endosymbionts like Wolbachia can be revealed by integrating information on infection status in natural populations with patterns of sequence variation in Wolbachia and host mitochondrial genomes. Here we use whole-genome resequencing data from 290 lines of Drosophila melanogaster from North America, Europe, and Africa to predict Wolbachia infection status, estimate relative cytoplasmic genome copy number, and reconstruct Wolbachia and mitochondrial genome sequences.

View Article and Find Full Text PDF

Variation in susceptibility to infectious disease often has a substantial genetic component in animal and plant populations. We have used genome-wide association studies (GWAS) in Drosophila melanogaster to identify the genetic basis of variation in susceptibility to viral infection. We found that there is substantially more genetic variation in susceptibility to two viruses that naturally infect D.

View Article and Find Full Text PDF

Epistasis-nonlinear genetic interactions between polymorphic loci-is the genetic basis of canalization and speciation, and epistatic interactions can be used to infer genetic networks affecting quantitative traits. However, the role that epistasis plays in the genetic architecture of quantitative traits is controversial. Here, we compared the genetic architecture of three Drosophila life history traits in the sequenced inbred lines of the Drosophila melanogaster Genetic Reference Panel (DGRP) and a large outbred, advanced intercross population derived from 40 DGRP lines (Flyland).

View Article and Find Full Text PDF

Reactive oxygen species (ROS) are a common byproduct of mitochondrial energy metabolism, and can also be induced by exogenous sources, including UV light, radiation, and environmental toxins. ROS generation is essential for maintaining homeostasis by triggering cellular signaling pathways and host defense mechanisms. However, an imbalance of ROS induces oxidative stress and cellular death and is associated with human disease, including age-related locomotor impairment.

View Article and Find Full Text PDF

Background: Aerobic organisms are susceptible to damage by reactive oxygen species. Oxidative stress resistance is a quantitative trait with population variation attributable to the interplay between genetic and environmental factors. Drosophila melanogaster provides an ideal system to study the genetics of variation for resistance to oxidative stress.

View Article and Find Full Text PDF

A major challenge of biology is understanding the relationship between molecular genetic variation and variation in quantitative traits, including fitness. This relationship determines our ability to predict phenotypes from genotypes and to understand how evolutionary forces shape variation within and between species. Previous efforts to dissect the genotype-phenotype map were based on incomplete genotypic information.

View Article and Find Full Text PDF

To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2.

View Article and Find Full Text PDF

Epistasis and pleiotropy feature prominently in the genetic architecture of quantitative traits but are difficult to assess in outbred populations. We performed a diallel cross among coisogenic Drosophila P-element mutations associated with hyperaggressive behavior and showed extensive epistatic and pleiotropic effects on aggression, brain morphology, and genome-wide transcript abundance in head tissues. Epistatic interactions were often of greater magnitude than homozygous effects, and the topology of epistatic networks varied among these phenotypes.

View Article and Find Full Text PDF

How functional diversification affects the organization of the transcriptome is a central question in systems genetics. To explore this issue, we sequenced all six Odorant binding protein (Obp) genes located on the X chromosome, four of which occur as a cluster, in 219 inbred wild-derived lines of Drosophila melanogaster and tested for associations between genetic and phenotypic variation at the organismal and transcriptional level. We observed polymorphisms in Obp8a, Obp19a, Obp19b, and Obp19c associated with variation in olfactory responses and polymorphisms in Obp19d associated with variation in life span.

View Article and Find Full Text PDF

Understanding the genetic and environmental factors that affect variation in life span and senescence is of major interest for human health and evolutionary biology. Multiple mechanisms affect longevity, many of which are conserved across species, but the genetic networks underlying each mechanism and cross-talk between networks are unknown. We report the results of a screen for mutations affecting Drosophila life span.

View Article and Find Full Text PDF

Determining the genetic architecture of complex traits is challenging because phenotypic variation arises from interactions between multiple, environmentally sensitive alleles. We quantified genome-wide transcript abundance and phenotypes for six ecologically relevant traits in D. melanogaster wild-derived inbred lines.

View Article and Find Full Text PDF