Carbohydrates (CHO) are the formal adducts of carbon (atoms) to water with a repeating unit that structurally resembles H-C̈-OH (hydroxymethylene). Although hydroxymethylene has been suggested as a building block for sugar formation, it is a reactive species that had escaped detection until recently. Here we demonstrate that formaldehyde reacts with its isomer hydroxymethylene to give glycolaldehyde in a nearly barrierless reaction.
View Article and Find Full Text PDFDisentangling internal and external effects is a key requirement for understanding conformational tunneling processes. Here we report the s- trans/ s- cis tunneling rotamerization of carbonic acid monomethyl ester (1) under matrix isolation conditions and make comparisons to its parent carbonic acid (3). The observed tunneling rate of 1 is temperature-independent in the 3-20 K range and accelerates when using argon instead of neon as the matrix material.
View Article and Find Full Text PDFWe report the evaporation of a stable cyclic silylene and its oxidation (with ozone or N2 O) through oxygen atom transfer to form the corresponding silanone under matrix isolation conditions. As uncomplexed silanones are rare owing to their very high reactivity, this method provides an alternative route to these sought-after molecules. The silanone, as well as a novel bicyclic silane with a bridgehead silicon atom derived from an intramolecular silylene CH bond insertion, were characterized by comparison of high-resolution infrared spectra with density functional theory (DFT) computations at the M06-2X/cc-pVDZ level of theory.
View Article and Find Full Text PDF