SbF is generally assumed to oxidize methane through a methanium-to-methyl cation mechanism. However, experimentally no H is observed, and the mechanism of methane oxidation has remained unsolved for several decades. To solve this problem, density functional theory calculations with multiple chemical models (mononuclear and dinuclear) were used to examine methane oxidation by SbF in the presence of CO leading to the methyl acylium cation ([CHCO]).
View Article and Find Full Text PDFOwing to the strong nonpolar bonds involved, selective C-H functionalization of methane and ethane to esters remains a challenge for molecular homogeneous chemistry. We report that the computationally predicted main-group p-block Sb (TFA) complex selectively functionalizes the C-H bonds of methane and ethane to the corresponding mono and/or diol trifluoroacetate esters at 110-180 °C with yields for ethane of up to 60 % with over 90 % selectivity. Experimental and computational studies support a unique mechanism that involves Sb -mediated C-H activation followed by functionalization of a Sb -alkyl intermediate.
View Article and Find Full Text PDFDirect partial oxidation of methane, ethane, and propane to their respective trifluoroacetate esters is achieved by a homogeneous hypervalent iodine(III) complex in non-superacidic (trifluoroacetic acid) solvent. The reaction is highly selective for ester formation (>99%). In the case of ethane, greater than 0.
View Article and Find Full Text PDFThe selective, oxidative functionalization of ethane, a significant component of shale gas, to products such as ethylene or ethanol at low temperatures and pressures remains a significant challenge. Herein we report that ethane is efficiently and selectively functionalized to the ethanol ester of H2SO4, ethyl bisulfate (EtOSO3H) as the initial product, with the Pt(II) "Periana-Catalytica" catalyst in 98% sulfuric acid. A subsequent organic reaction selectively generates isethionic acid bisulfate ester (HO3S-CH2-CH2-OSO3H, ITA).
View Article and Find Full Text PDFWe describe an efficient system for the direct partial oxidation of methane, ethane, and propane using iodate salts with catalytic amounts of chloride in protic solvents. In HTFA (TFA = trifluoroacetate), >20% methane conversion with >85% selectivity for MeTFA have been achieved. The addition of substoichiometric amounts of chloride is essential, and for methane the conversion increases from <1% in the absence of chloride to >20%.
View Article and Find Full Text PDFMuch of the recent research on homogeneous alkane oxidation has focused on the use of transition metal catalysts. Here, we report that the electrophilic main-group cations thallium(III) and lead(IV) stoichiometrically oxidize methane, ethane, and propane, separately or as a one-pot mixture, to corresponding alcohol esters in trifluoroacetic acid solvent. Esters of methanol, ethanol, ethylene glycol, isopropanol, and propylene glycol are obtained with greater than 95% selectivity in concentrations up to 1.
View Article and Find Full Text PDFDesigning oxidation catalysts based on CH activation with reduced, low oxidation state species is a seeming dilemma given the proclivity for catalyst deactivation by overoxidation. This dilemma has been recognized in the Shilov system where reduced Pt(II) is used to catalyze methane functionalization. Thus, it is generally accepted that key to replacing Pt(IV) in that system with more practical oxidants is ensuring that the oxidant does not over-oxidize the reduced Pt(II) species.
View Article and Find Full Text PDFIn an effort to augment or displace petroleum as a source of liquid fuels and chemicals, researchers are seeking lower cost technologies that convert natural gas (largely methane) to products such as methanol. Current methane to methanol technologies based on highly optimized, indirect, high-temperature chemistry (>800 °C) are prohibitively expensive. A new generation of catalysts is needed to rapidly convert methane and O(2) (ideally as air) directly to methanol (or other liquid hydrocarbons) at lower temperatures (~250 °C) and with high selectivity.
View Article and Find Full Text PDFThe reaction of molecular oxygen with a Pd(II)-hydride species to form a Pd(II)-hydroperoxide represents one of the proposed catalyst reoxidation pathways in Pd-catalyzed aerobic oxidation reactions, but well-defined examples of this reaction were discovered only recently. Here, we present a mechanistic study of the reaction of O2 with trans-(IMes) 2Pd(H)(OBz), 1 (IMes = 1,3-dimesitylimidazol-2-ylidene), which yields trans-(IMes) 2Pd(OOH)(OBz), 2. The reaction was monitored by (1)H NMR spectroscopy in benzene-d6, and kinetic studies reveal a two-term rate law, rate = k1[1] + k2[1][BzOH], and a small deuterium kinetic isotope effect, k(Pd-H)/k(Pd-D) = 1.
View Article and Find Full Text PDFAn eta2-peroxopalladium(II) complex, derived from dioxygen addition to Pd(IMes)2 (IMes = bis-1,3-di(2,4,6-trimethylphenyl)imidazoline-2-ylidene), has been isolated and characterized. Subsequent addition of HOAc to (IMes)2Pd(O2) yields the first example of a hydroperoxopalladium species derived from molecular oxygen. The characterization and reactivity studies of these complexes provide the most detailed insights to date into the proposed mechanism for palladium(0) oxidation by molecular oxygen.
View Article and Find Full Text PDF