Due to difficulty of obtaining accurate quantitative data on foot muscles, relatively little has been done to study foot muscle function in non-human apes. Gorilla feet are known to be similar in bony proportions and mechanics to those of humans, hence are key to understanding human foot evolution and its ecological context. We present the first 3D musculoskeletal computer model of a western lowland gorilla foot, giving muscle torques about the tarsometatarsal, metatarsophalangeal and interphalangeal joints of digits 2-5.
View Article and Find Full Text PDFThree-dimensional musculoskeletal models have become increasingly common for investigating muscle moment arms in studies of vertebrate locomotion. In this study we present the first musculoskeletal model of a western lowland gorilla hind limb. Moment arms of individual muscles around the hip, knee and ankle were compared with previously published data derived from the experimental tendon travel method.
View Article and Find Full Text PDFThe feet of apes have a different morphology from those of humans. Until now, it has merely been assumed that the morphology seen in humans must be adaptive for habitual bipedal walking, as the habitual use of bipedal walking is generally regarded as one of the most clear-cut differences between humans and apes. This study asks simply whether human skeletal proportions do actually enhance foot performance during human-like bipedalism, by examining the influence of foot proportions on force, torque and work in the foot joints during simulated bipedal walking.
View Article and Find Full Text PDFThe maximum capability of a muscle can be estimated from simple measurements of muscle architecture such as muscle belly mass, fascicle length and physiological cross-sectional area. While the hindlimb anatomy of the non-human apes has been studied in some detail, a comparative study of the forelimb architecture across a number of species has never been undertaken. Here we present data from chimpanzees, bonobos, gorillas and an orangutan to ascertain if, and where, there are functional differences relating to their different locomotor repertoires and habitat usage.
View Article and Find Full Text PDFThe distance that animals leap depends on their take-off angle and velocity. The velocity is generated solely by mechanical work during the push-off phase of standing-start leaps. Gibbons are capable of exceptional leaping performance, crossing gaps in the forest canopy exceeding 10 m, yet possess none of the adaptations possessed by specialist leapers synonymous with maximizing mechanical work.
View Article and Find Full Text PDFThe storage and recovery of elastic strain energy in the musculoskeletal systems of locomoting animals has been extensively studied, yet the external environment represents a second potentially useful energy store that has often been neglected. Recent studies have highlighted the ability of orangutans to usefully recover energy from swaying trees to minimise the cost of gap crossing. Although mechanically similar mechanisms have been hypothesised for wild leaping primates, to date no such energy recovery mechanisms have been demonstrated biomechanically in leapers.
View Article and Find Full Text PDFMuscles facilitate skeletal movement via the production of a torque or moment about a joint. The magnitude of the moment produced depends on both the force of muscular contraction and the size of the moment arm used to rotate the joint. Hence, larger muscle moment arms generate larger joint torques and forces at the point of application.
View Article and Find Full Text PDFGibbons utilize a number of locomotor modes in the wild, including bipedalism, leaping and, most of all, brachiation. Each locomotor mode puts specific constraints on the morphology of the animal; in some cases these may be complementary, whereas in others they may conflict. Despite several studies of the locomotor biomechanics of gibbons, very little is known about the musculoskeletal architecture of the limbs.
View Article and Find Full Text PDFQuantitative, accurate data regarding the inertial properties of body segments are of paramount importance when developing musculo-skeletal locomotor models of living animals and, by inference, their ancestors. The limited number of available primate cadavers, and the destructive nature of the post-mortem, result in such data being very rare for primates. This study builds on the work of Crompton et al.
View Article and Find Full Text PDFSize and proportions of the postcranial skeleton differ markedly between Australopithecus afarensis and Homo ergaster, and between the latter and modern Homo sapiens. This study uses computer simulations of gait in models derived from the best-known skeletons of these species (AL 288-1, Australopithecus afarensis, 3.18 million year ago) and KNM-WT 15000 (Homo ergaster, 1.
View Article and Find Full Text PDF