Urinary tract infections (UTIs) are common and frequently precipitate delirium-like states. Advanced age coincident with the postmenopausal period is a risk factor for delirium following UTIs. We previously demonstrated a pathological role for interleukin-6 (IL-6) in mediating delirium-like phenotypes in a murine model of UTI.
View Article and Find Full Text PDFAcute neuropsychiatric impairments occur in over 70% of patients with acute lung injury. Mechanical ventilation is a well-known precipitant of acute lung injury and is strongly associated with the development of acute delirium and anxiety phenotypes. In prior studies, we demonstrated that IL-6 mediates neuropathological changes in the frontal cortex and hippocampus of animals with mechanical ventilation-induced brain injury; however, the effect of systemic IL-6 inhibition on structural and functional acute neuropsychiatric phenotypes is not known.
View Article and Find Full Text PDFAcute kidney injury is a known clinical risk factor for delirium, an acute cognitive dysfunction that is commonly encountered in the critically ill population. In this comprehensive review of clinical and basic research studies, we detail the epidemiology, clinical implications, pathogenesis, and management strategies of patients with acute kidney injury-associated delirium. Specifically addressed are the pathological roles of endogenous toxin or drug accumulation, acute kidney injury-mediated neuroinflammation, and acute kidney injury-associated volume overload as discrete potential biological mechanisms of the condition.
View Article and Find Full Text PDFMechanical ventilation is a known risk factor for delirium, a cognitive impairment characterized by dysfunction of the frontal cortex and hippocampus. Although IL-6 is upregulated in mechanical ventilation-induced lung injury (VILI) and may contribute to delirium, it is not known whether the inhibition of systemic IL-6 mitigates delirium-relevant neuropathology. To histologically define neuropathological effects of IL-6 inhibition in an experimental VILI model, VILI was simulated in anesthetized adult mice using a 35 cc/kg tidal volume mechanical ventilation model.
View Article and Find Full Text PDFAdrenoceptor and calcium channel modulating medications are widely used in clinical practice for acute neurological and systemic conditions. It is generally assumed that the cerebrovascular effects of these drugs mirror that of their systemic effects - and this is reflected in how these medications are currently used in clinical practice. However, recent research suggests that there are distinct cerebrovascular-specific effects of these medications that are related to the unique characteristics of the cerebrovascular anatomy including the regional heterogeneity in density and distribution of adrenoceptor subtypes and calcium channels along the cerebrovasculature.
View Article and Find Full Text PDF