The mechanisms underlying the initiation and elongation of RNA polymerase II (Pol II) transcription are well-studied, whereas termination remains poorly understood. Here we analyze the mechanism of polyadenylation-independent Pol II termination mediated by the yeast Sen1 helicase. Cryo-electron microscopy structures of two pretermination intermediates show that Sen1 binds to Pol II and uses its adenosine triphosphatase activity to pull on exiting RNA in the 5' direction.
View Article and Find Full Text PDFTo maintain the nucleosome organization of transcribed genes, ATP-dependent chromatin remodelers collaborate with histone chaperones. Here, we show that at the 5' ends of yeast genes, RNA polymerase II (RNAPII) generates hexasomes that occur directly adjacent to nucleosomes. The resulting hexasome-nucleosome complexes are then resolved by Chd1.
View Article and Find Full Text PDFCyclin-dependent kinase 7 (CDK7), part of the general transcription factor TFIIH, promotes gene transcription by phosphorylating the C-terminal domain of RNA polymerase II (RNA Pol II). Here, we combine rapid CDK7 kinase inhibition with multi-omics analysis to unravel the direct functions of CDK7 in human cells. CDK7 inhibition causes RNA Pol II retention at promoters, leading to decreased RNA Pol II initiation and immediate global downregulation of transcript synthesis.
View Article and Find Full Text PDFIsocitrate dehydrogenase (IDH) mutations are found in 20% of acute myeloid leukemia (AML) patients. However, only 30-40% of the patients respond to IDH inhibitors (IDHi). We aimed to identify a molecular vulnerability to tailor novel therapies for AML patients with IDH mutations.
View Article and Find Full Text PDFEnhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches.
View Article and Find Full Text PDFAt active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis.
View Article and Find Full Text PDFThe transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency.
View Article and Find Full Text PDFDNA can determine where and when genes are expressed, but the full set of sequence determinants that control gene expression is unknown. Here, we measured the transcriptional activity of DNA sequences that represent an ~100 times larger sequence space than the human genome using massively parallel reporter assays (MPRAs). Machine learning models revealed that transcription factors (TFs) generally act in an additive manner with weak grammar and that most enhancers increase expression from a promoter by a mechanism that does not appear to involve specific TF-TF interactions.
View Article and Find Full Text PDFMouse embryonic stem cells (mESCs) can adopt naïve, ground, and paused pluripotent states that give rise to unique transcriptomes. Here, we use transient transcriptome sequencing (TT-seq) to define both coding and non-coding transcription units (TUs) in these three pluripotent states and combine TT-seq with RNA polymerase II occupancy profiling to unravel the kinetics of RNA metabolism genome-wide. Compared to the naïve state (serum), RNA synthesis and turnover rates are globally reduced in the ground state (2i) and the paused state (mTORi).
View Article and Find Full Text PDFThe Cdk8 kinase module (CKM) is a dissociable part of the coactivator complex mediator, which regulates gene transcription by RNA polymerase II. The CKM has both negative and positive functions in gene transcription that remain poorly understood at the mechanistic level. In order to reconstitute the role of the CKM in transcription initiation, we prepared recombinant CKM from the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFStabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism.
View Article and Find Full Text PDFTranscription by RNA polymerase II (Pol II) is coupled to pre-mRNA splicing, but the underlying mechanisms remain poorly understood. Co-transcriptional splicing requires assembly of a functional spliceosome on nascent pre-mRNA, but whether and how this influences Pol II transcription remains unclear. Here we show that inhibition of pre-mRNA branch site recognition by the spliceosome component U2 snRNP leads to a widespread and strong decrease in new RNA synthesis from human genes.
View Article and Find Full Text PDFEukaryotic RNA polymerase II (Pol II) contains a tail-like, intrinsically disordered carboxy-terminal domain (CTD) comprised of heptad-repeats, that functions in coordination of the transcription cycle and in coupling transcription to co-transcriptional processes. The CTD repeat number varies between species and generally increases with genome size, but the reasons for this are unclear. Here, we show that shortening the CTD in human cells to half of its length does not generally change pre-mRNA synthesis or processing in cells.
View Article and Find Full Text PDFThe growth of human cancer cells is driven by aberrant enhancer and gene transcription activity. Here, we use transient transcriptome sequencing (TT-seq) to map thousands of transcriptionally active putative enhancers in fourteen human cancer cell lines covering seven types of cancer. These enhancers were associated with cell type-specific gene expression, enriched for genetic variants that predispose to cancer, and included functionally verified enhancers.
View Article and Find Full Text PDFSequencing of newly synthesised RNA can monitor transcriptional dynamics with great sensitivity and high temporal resolution, but is currently restricted to populations of cells. Here, we develop new transcriptome alkylation-dependent single-cell RNA sequencing (NASC-seq), to monitor newly synthesised and pre-existing RNA simultaneously in single cells. We validate the method on pre-labelled RNA, and by demonstrating that more newly synthesised RNA was detected for genes with known high mRNA turnover.
View Article and Find Full Text PDFThe 3'-ends of eukaryotic pre-mRNAs are processed in the nucleus by a large multiprotein complex, the cleavage and polyadenylation factor (CPF). CPF cleaves RNA, adds a poly(A) tail and signals transcription termination. CPF harbors four enzymatic activities essential for these processes, but how these are coordinated remains poorly understood.
View Article and Find Full Text PDFFor transcription through chromatin, RNA polymerase (Pol) II associates with elongation factors (EFs). Here we show that many EFs crosslink to RNA emerging from transcribing Pol II in the yeast . Most EFs crosslink preferentially to mRNAs, rather than unstable non-coding RNAs.
View Article and Find Full Text PDFAt the end of protein-coding genes, RNA polymerase (Pol) II undergoes a concerted transition that involves 3'-processing of the pre-mRNA and transcription termination. Here, we present a genome-wide analysis of the 3'-transition in budding yeast. We find that the 3'-transition globally requires the Pol II elongation factor Spt5 and factors involved in the recognition of the polyadenylation (pA) site and in endonucleolytic RNA cleavage.
View Article and Find Full Text PDFDNA replication, transcription and repair involve the recruitment of protein complexes that change their composition as they progress along the genome in a directed or strand-specific manner. Chromatin immunoprecipitation in conjunction with hidden Markov models (HMMs) has been instrumental in understanding these processes, as they segment the genome into discrete states that can be related to DNA-associated protein complexes. However, current HMM-based approaches are not able to assign forward or reverse direction to states or properly integrate strand-specific (e.
View Article and Find Full Text PDFThe Nrd1-Nab3-Sen1 (NNS) complex is essential for controlling pervasive transcription and generating sn/snoRNAs in S. cerevisiae. The NNS complex terminates transcription of noncoding RNA genes and promotes exosome-dependent processing/degradation of the released transcripts.
View Article and Find Full Text PDFAt the 3' ends of protein-coding genes, RNA polymerase (Pol) II is dephosphorylated at tyrosine residues (Tyr1) of its C-terminal domain (CTD). In addition, the associated cleavage-and-polyadenylation factor (CPF) cleaves the transcript and adds a poly(a) tail. Whether these events are coordinated and how they lead to transcription termination remains poorly understood.
View Article and Find Full Text PDFThe RNA polymerase II (RNApII) C-terminal domain (CTD)-interacting domain (CID) proteins are involved in two distinct RNApII termination pathways and recognize different phosphorylated forms of CTD. To investigate the role of differential CTD-CID interactions in the choice of termination pathway, we altered the CTD-binding specificity of Nrd1 by domain swapping. Nrd1 with the CID from Rtt103 (Nrd1(CID(Rtt103))) causes read-through transcription at many genes, but can also trigger termination where multiple Nrd1/Nab3-binding sites and the Ser(P)-2 CTD co-exist.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2013
Bypass of Ess1 (Bye1) is a nuclear protein with a domain resembling the central domain in the transcription elongation factor TFIIS. Here we show that Bye1 binds with its TFIIS-like domain (TLD) to RNA polymerase (Pol) II, and report crystal structures of the Bye1 TLD bound to Pol II and three different Pol II-nucleic acid complexes. Like TFIIS, Bye1 binds with its TLD to the Pol II jaw and funnel.
View Article and Find Full Text PDFAfter transcription initiation, RNA polymerase (Pol) II escapes from the promoter and recruits elongation factors. The molecular basis for the initiation-elongation factor exchange during this transition remains poorly understood. Here, we used chromatin immunoprecipitation (ChIP) to elucidate the initiation-elongation transition of Pol II in the budding yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDFMetabolic control of gene expression coordinates the levels of specific gene products to meet cellular demand for their activities. This control can be exerted by metabolites acting as regulatory signals and/or a class of metabolic enzymes with dual functions as regulators of gene expression. However, little is known about how metabolic signals affect the balance between enzymatic and regulatory roles of these dual functional proteins.
View Article and Find Full Text PDF