In recent years, the energy generated by the salinity gradient has become a subject of growing interest as a source of renewable energy. One of the most widely used processes is reverse electrodialysis (RED), based on the use of ion exchange membranes and Faradaic electrodes. However, the use of real salt solutions containing mixtures of divalent and monovalent ions in the RED process results in a significant loss of recovered power, compared with salt solutions containing only monovalent ions.
View Article and Find Full Text PDFIn this paper we investigate the in vitro dynamics of a single rabbit red blood cell (RBC) in a planar linear flow as a function of a shear stress σ and the dynamic viscosity of outer fluid η_{o}. A linear flow is a generalization of previous studies dynamics of soft objects including RBC in shear flow and is realized in the experiment in a microfluidic four-roll mill device. We verify that the RBC stable orientation dynamics is found in the experiment being the in-shear-plane orientation and the RBC dynamics is characterized by observed three RBC dynamical states, namely tumbling (TU), intermediate (INT), and swinging (SW) [or tank-treading (TT)] on a single RBC.
View Article and Find Full Text PDFWe report first experimental observations of dynamics of compound vesicles in linear flow realized in a microfluidic four-roll mill. We show that while a compound vesicle undergoes the same main tank-treading, trembling (TR), and tumbling regimes, its dynamics are far richer and more complex than that of unilamellar vesicles. A new swinging motion of the inner vesicle is found in TR in accord with simulations.
View Article and Find Full Text PDFWe review the dynamical behavior of giant fluid vesicles in various types of external hydrodynamic flow. The interplay between stresses arising from membrane elasticity, hydrodynamic flows, and the ever present thermal fluctuations leads to a rich phenomenology. In linear flows with both rotational and elongational components, the properties of the tank-treading and tumbling motions are now well described by theoretical and numerical models.
View Article and Find Full Text PDFA novel noise amplification mechanism resulting from the interaction of thermal fluctuations and nonlinear vesicle dynamics is reported. It is observed in a time-dependent vesicle state called trembling (TR). High spatial resolution and very long time series of TR compared to the vesicle period allow us to quantitatively analyze the generation and amplification of spatial and temporal modes of the vesicle shape perturbations.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
May 2012
We report the experimental studies on interaction of two vesicles trapped in a microfluidic four-roll mill, where a plane linear flow is realized. We found that the dynamics of a vesicle in tank-treading motion is significantly altered by the presence of another vesicle at separation distances up to 3.2-3.
View Article and Find Full Text PDF