Publications by authors named "Michael Lenaeus"

The poison dart toxin batrachotoxin is exceptional for its high potency and toxicity, and for its multifaceted modification of the function of voltage-gated sodium channels. By using cryogenic electron microscopy, we identify two homologous, but nonidentical receptor sites that simultaneously bind two molecules of toxin, one at the interface between Domains I and IV, and the other at the interface between Domains III and IV of the cardiac sodium channel. Together, these two bound toxin molecules stabilize α/π helical conformation in the S6 segments that gate the pore, and one of the bound BTX-B molecules interacts with the crucial Lys1421 residue that is essential for sodium conductance and selectivity via an apparent water-bridged hydrogen bond.

View Article and Find Full Text PDF

Voltage-gated sodium channels (Na) are responsible for the initiation and propagation of action potentials in excitable cells. From pain to heartbeat, these integral membrane proteins are the ignition stations for every sensation and action in human bodies. They are large (>200 kDa, 24 transmembrane helices) multi-domain proteins that couple changes in membrane voltage to the gating cycle of the sodium-selective pore.

View Article and Find Full Text PDF

The heartbeat is initiated by voltage-gated sodium channel Na1.5, which opens rapidly and triggers the cardiac action potential; however, the structural basis for pore opening remains unknown. Here, we blocked fast inactivation with a mutation and captured the elusive open-state structure.

View Article and Find Full Text PDF

Voltage-gated sodium channel Na1.5 generates cardiac action potentials and initiates the heartbeat. Here, we report structures of Na1.

View Article and Find Full Text PDF

Voltage-gated sodium and calcium channels are evolutionarily related transmembrane signaling proteins that initiate action potentials, neurotransmission, excitation-contraction coupling, and other physiological processes. Genetic or acquired dysfunction of these proteins causes numerous diseases, termed channelopathies, and sodium and calcium channels are the molecular targets for several major classes of drugs. Recent advances in the structural biology of these proteins using X-ray crystallography and cryo-electron microscopy have given new insights into the molecular basis for their function and pharmacology.

View Article and Find Full Text PDF

Diltiazem is a widely prescribed Ca antagonist drug for cardiac arrhythmia, hypertension, and angina pectoris. Using the ancestral Ca channel construct CaAb as a molecular model for X-ray crystallographic analysis, we show here that diltiazem targets the central cavity of the voltage-gated Ca channel underneath its selectivity filter and physically blocks ion conduction. The diltiazem-binding site overlaps with the receptor site for phenylalkylamine Ca antagonist drugs such as verapamil.

View Article and Find Full Text PDF

Potency of drug action is usually determined by binding to a specific receptor site on target proteins. In contrast to this conventional paradigm, we show here that potency of local anesthetics (LAs) and antiarrhythmic drugs (AADs) that block sodium channels is controlled by fenestrations that allow drug access to the receptor site directly from the membrane phase. Voltage-gated sodium channels initiate action potentials in nerve and cardiac muscle, where their hyperactivity causes pain and cardiac arrhythmia, respectively.

View Article and Find Full Text PDF

Homotetrameric bacterial voltage-gated sodium channels share major biophysical features with their more complex eukaryotic counterparts, including a slow-inactivation mechanism that reduces ion-conductance activity during prolonged depolarization through conformational changes in the pore. The bacterial sodium channel NaAb activates at very negative membrane potentials and inactivates through a multiphase slow-inactivation mechanism. Early voltage-dependent inactivation during one depolarization is followed by late use-dependent inactivation during repetitive depolarization.

View Article and Find Full Text PDF

Voltage-gated sodium channels initiate and propagate action potentials in excitable cells. They respond to membrane depolarization through opening, followed by fast inactivation that terminates the sodium current. This ON-OFF behavior of voltage-gated sodium channels underlays the coding of information and its transmission from one location in the nervous system to another.

View Article and Find Full Text PDF

Bacterial voltage-gated sodium channels (BacNavs) serve as models of their vertebrate counterparts. BacNavs contain conserved voltage-sensing and pore-forming domains, but they are homotetramers of four identical subunits, rather than pseudotetramers of four homologous domains. Here, we present structures of two NaAb mutants that capture tightly closed and open states at a resolution of 2.

View Article and Find Full Text PDF

Obstructive lung disease includes asthma and chronic obstructive pulmonary disease (COPD). Because a previous issue of Medical Clinics of North America (2012;96[4]) was devoted to COPD, this article focuses on asthma in adults, and addresses some topics about COPD not addressed previously. Asthma is a heterogeneous disease marked by variable airflow obstruction and bronchial hyperreactivity.

View Article and Find Full Text PDF

Potassium channels allow for the passive movement of potassium ions across the cell membrane and are instrumental in controlling the membrane potential in all cell types. Quaternary ammonium (QA) compounds block potassium channels and have long been used to study the functional and structural properties of these channels. Here we describe the interaction between three symmetrical hydrophobic QAs and the prokaryotic potassium channel KcsA.

View Article and Find Full Text PDF

The mitochondrial cytochrome bc(1) complex catalyzes the transfer of electrons from ubiquinol to cyt c while generating a proton motive force for ATP synthesis via the "Q-cycle" mechanism. Under certain conditions electron flow through the Q-cycle is blocked at the level of a reactive intermediate in the quinol oxidase site of the enzyme, resulting in "bypass reactions," some of which lead to superoxide production. Using analogs of the respiratory substrates ubiquinol-3 and rhodoquinol-3, we show that the relative rates of Q-cycle bypass reactions in the Saccharomyces cerevisiae cyt bc(1) complex are highly dependent by a factor of up to 100-fold on the properties of the substrate quinol.

View Article and Find Full Text PDF

Potassium channels catalyze the selective transfer of potassium across the cell membrane and are essential for setting the resting potential in cells, controlling heart rate and modulating the firing pattern in neurons. Tetraethylammonium (TEA) blocks ion conduction through potassium channels in a voltage-dependent manner from both sides of the membrane. Here we show the structural basis of TEA blockade by cocrystallizing the prokaryotic potassium channel KcsA with two selective TEA analogs.

View Article and Find Full Text PDF