Cell immortalization, a hallmark of cancer development, is a process that cells can undergo on their path to carcinogenesis. Spontaneously immortalized mouse embryonic fibroblasts (MEFs) have been used for decades; however, changes in the global transcriptome during this process have been poorly described. In our research, we characterized the poly-A RNA transcriptome changes after spontaneous immortalization.
View Article and Find Full Text PDFFront Immunol
December 2022
Protein kinases D (PKDs) are implicated in T cell receptor (TCR) signaling. Of the two T cell-expressed isoforms PKD2 and PKD3, however, only the former one is rather well understood in this immune cell type. Recently, we have observed a putative hyper-phenotype of T cells from conventional PKD3-knockout mice, which we explained as a secondary effect due to a skewed T cell compartment from naïve towards effector/memory T cells already under steady state conditions.
View Article and Find Full Text PDFUnlabelled: Βackground: β-Amyloid precursor protein-cleaving enzyme-1 (BACE1) initiates the production of Aβ-peptides that form Aβ-plaque in Alzheimer's disease.
Methods: Reportedly, acute insulin treatment in normal mice, and hyperinsulinemia in high-fat-fed (HFF) obese/diabetic mice, increase BACE1 activity and levels of Aβ-peptides and phospho- -thr-231-tau in the brain; moreover, these effects are blocked by PKC-λ/ι inhibitors. However, as chemical inhibitors may affect unsuspected targets, we presently used knockout methodology to further examine PKC-λ/ι requirements.
We report that atypical protein kinase Cι (PKCι) is an oncogenic driver of glioblastoma (GBM). Deletion or inhibition of PKCι significantly impairs tumor growth and prolongs survival in murine GBM models. GBM cells expressing elevated PKCι signaling are sensitive to PKCι inhibitors, whereas those expressing low PKCι signaling exhibit active SRC signaling and sensitivity to SRC inhibitors.
View Article and Find Full Text PDFIn view of emerging drug-resistant tuberculosis (TB), host-directed adjunct therapies are urgently needed to improve treatment outcomes with currently available anti-TB therapies. One approach is to interfere with the formation of lipid-laden "foamy" macrophages in the host, as they provide a nutrient-rich host cell environment for Mycobacterium tuberculosis (Mtb). Here, we provide evidence that Wnt family member 6 (WNT6), a ligand of the evolutionarily conserved Wingless/Integrase 1 (WNT) signaling pathway, promotes foam cell formation by regulating key lipid metabolic genes including acetyl-CoA carboxylase 2 (ACC2) during pulmonary TB.
View Article and Find Full Text PDFMembers of the protein kinase D (PKD) family (PKD1, 2, and 3) integrate hormonal and nutritional inputs to regulate complex cellular metabolism. Despite the fact that a number of functions have been annotated to particular PKDs, their molecular targets are relatively poorly explored. PKD3 promotes insulin sensitivity and suppresses lipogenesis in the liver of animals fed a high-fat diet.
View Article and Find Full Text PDFSurvival of chronic lymphocytic leukemia (CLL) cells critically depends on the support of an adapted and therefore appropriate tumor microenvironment. Increasing evidence suggests that B-cell receptor-associated kinases such as protein kinase C-β (PKCβ) or Lyn kinase are essential for the formation of a microenvironment supporting leukemic growth. Here, we describe the impact of PKCβ on the glucose metabolism in bone marrow stromal cells (BMSC) upon CLL contact.
View Article and Find Full Text PDFPKC isozymes have been put in place as oncoproteins since the discovery that they can function as receptors for potent tumor-promoting phorbol esters in the 1980s. Despite nearly two decades of research, a clear in vivo proof of that concept was missing. The availability of so-called knock out mouse lines of individual PKC genes provided a tool to investigate isozyme specific in vivo functions in the context of tumor initiation, development and progression.
View Article and Find Full Text PDFOvercoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-β-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies.
View Article and Find Full Text PDFBackground: Protein kinase C θ has been established as an important signaling intermediate in T-effector-cell activation and survival pathways by controlling activity of the key transcription factors NF-κB and NFAT. Previous studies identified an activation-induced auto-phosphorylation site at Thr-219, located between the tandem C1 domains of the regulatory fragment in PKCθ, as a structural requirement for its correct membrane translocation and the subsequent transactivation of downstream signals leading to IL-2 production in a human T cell line.
Methods: The present work aimed to define the role of this phosphorylation switch on PKCθ in a physiological context through a homozygous T219A knockin mouse strain.
We report that mouse LSL-Kras;Trp53 (KP)-mediated lung adenocarcinoma (LADC) tumorigenesis can proceed through both PKCι-dependent and PKCι-independent pathways. The predominant pathway involves PKCι-dependent transformation of bronchoalveolar stem cells (BASCs). However, KP mice harboring conditional knock out Prkci alleles (KPI mice) develop LADC tumors through PKCι-independent transformation of Axin2 alveolar type 2 (AT2) stem cells.
View Article and Find Full Text PDFBackground: The protein kinase C theta (PKCθ) has an important and non-redundant function downstream of the antigen receptor and co-receptor complex in T lymphocytes. PKCθ is not only essential for activation of NF-κB, AP-1 and NFAT and subsequent interleukin-2 expression, but also critical for positive selection and development of regulatory T lymphocytes in the thymus. Several domains regulate its activity, such as a pseudosubstrate sequence mediating an auto-inhibitory intramolecular interaction, the tandem C1 domains binding diacylglycerol, and phosphorylation at conserved tyrosine, threonine as well as serine residues throughout the whole length of the protein.
View Article and Find Full Text PDFThe protein kinase C (PKC) enzymes have long been established as critical for synaptic plasticity. However, it is unknown whether Ca-dependent PKC isozymes are activated in dendritic spines during plasticity and, if so, how this synaptic activity is encoded by PKC. Here, using newly developed, isozyme-specific sensors, we demonstrate that classical isozymes are activated to varying degrees and with distinct kinetics.
View Article and Find Full Text PDFPKCβ-null (Prkcb) mice are severely immunodeficient. Here we show that mice whose B cells lack PKCβ failed to form germinal centers and plasma cells, which undermined affinity maturation and antibody production in response to immunization. Moreover, these mice failed to develop plasma cells in response to viral infection.
View Article and Find Full Text PDFThe polarity proteins Par3 and aPKC are key regulators of processes altered in cancer. Par3/aPKC are thought to dynamically interact with Par6 but increasing evidence suggests that aPKC and Par3 also exert complex-independent functions. Whereas aPKCλ serves as tumor promotor, Par3 can either promote or suppress tumorigenesis.
View Article and Find Full Text PDFHyperinsulinemia activates brain Akt and PKC-λ/ι and increases Aβ and phospho-tau in insulin-resistant animals. Here, we examined underlying mechanisms in mice, neuronal cells, and mouse hippocampal slices. Like Aβ, β-secretase activity was increased in insulin-resistant mice and monkeys.
View Article and Find Full Text PDFPlatelet activation at sites of vascular injury is crucial for hemostasis, but it may also cause myocardial infarction or ischemic stroke. Upon platelet activation, cytoskeletal reorganization is essential for platelet secretion and thrombus formation. Members of the protein kinase C family, which includes 12 isoforms, are involved in most platelet responses required for thrombus formation.
View Article and Find Full Text PDF