Publications by authors named "Michael Laue"

Conventional thin section electron microscopy of viral pathogens, such as the pandemic SARS-CoV-2, can provide structural information on the virus particle phenotype and its evolution. We recorded about 900 transmission electron microscopy images of different SARS-CoV-2 variants, including Alpha (B.1.

View Article and Find Full Text PDF
Article Synopsis
  • Diagnostic electron microscopy (EM) is crucial for identifying pathogens in infectious diseases, with its focus shifting to special cases and emergencies over the years.
  • Despite a decline in its routine use, preserving knowledge and refining diagnostic methods remain essential.
  • The article reviews key techniques, protocols, sample handling, and recent advancements in diagnostic EM, while also exploring upcoming trends like machine learning for enhancing analysis.
View Article and Find Full Text PDF

The egress of intracellular bacteria from host cells and cellular tissues is a critical process during the infection cycle. This process is essential for bacteria to spread inside the host and can influence the outcome of an infection. For the obligate intracellular Gram-negative zoonotic bacterium little is known about the mechanisms resulting in bacterial egress from the infected epithelium.

View Article and Find Full Text PDF

Mutations in LRBA, a BEACH domain protein, cause severe immune deficiency in humans. LRBA is expressed in many tissues and organs according to biochemical analysis, but little is known about its cellular and subcellular localization, and its deficiency phenotype outside the immune system. By LacZ histochemistry of Lrba gene-trap mice, we performed a comprehensive survey of LRBA expression in numerous tissues, detecting it in many if not all epithelia, in exocrine and endocrine cells, and in subpopulations of neurons.

View Article and Find Full Text PDF

Chiral phosphoric acids (CPAs) are among the most frequently used organocatalysts, with an ever-increasing number of applications. However, these catalysts are only obtained in a multistep synthesis and are poorly recyclable, which significantly deteriorates their environmental and economic performance. We herein report a conceptually different, general strategy for the direct immobilization of CPAs on a broad scope of solid supports including silica, polystyrene, and aluminum oxide.

View Article and Find Full Text PDF

Germline colonization by retroviruses results in the formation of endogenous retroviruses (ERVs). Most colonization's occurred millions of years ago. However, in the Australo-Papuan region (Australia and New Guinea), several recent germline colonization events have been discovered The Wallace Line separates much of Southeast Asia from the Australo-Papuan region restricting faunal and pathogen dispersion.

View Article and Find Full Text PDF

biovar () is an untypical pathogen causing a fatal anthrax-like disease in a variety of wildlife species in African rainforest areas. In contrast to and most species of the group, all strains of the cluster contain a 22 kb insertion in the gene which encodes the essential late sporulation sigma factor σ. This insertion is excised during sporulation in a site-specific recombination process resulting in an intact gene and a circular molecule.

View Article and Find Full Text PDF

After ingestion of dormant cysts, the widespread protozoan parasite Giardia lamblia colonizes the host gastrointestinal tract via direct and reversible attachment using a novel microtubule organelle, the ventral disc. Extracellular attachment to the host allows the parasite to resist peristaltic flow, facilitates colonization and is proposed to cause damage to the microvilli of host enterocytes as well as disrupt host barrier integrity. The 9 um in diameter ventral disc is defined by a highly complex architecture of unique protein complexes scaffolded onto a spiral microtubule (MT) array of one hundred parallel, uniformly spaced MT polymers that bend approximately one and a quarter turns to form a domed structure.

View Article and Find Full Text PDF

Dormant bacterial spores undergo the process of germination to return to a vegetative state. In most species, germination involves the sensing of nutrient germinants, the release of various cations and a calcium-dipicolinic acid (DPA) complex, spore cortex degradation, and full rehydration of the spore core. These steps are mediated by membrane-associated proteins, and all these proteins have exposure on the outer surface of the membrane, a hydrated environment where they are potentially subject to damage during dormancy.

View Article and Find Full Text PDF
Article Synopsis
  • Dippity Pig Syndrome (DPS) is a rare condition affecting minipigs characterized by sudden, painful red lesions along the spine, causing the back to arch and dip.
  • A study was conducted on both affected and unaffected Göttingen Minipigs (GöMPs) to investigate potential viral causes, screening for various DNA and RNA viruses, including porcine cytomegalovirus and porcine circoviruses.
  • Findings showed that integrated porcine endogenous retroviruses were present in all pigs, while some viruses like PLHV-3 were noted in both affected and unaffected pigs, although no specific viral particles were found in affected animals.
View Article and Find Full Text PDF

Phosphole oxides undergo a highly chemoselective reaction with sulfonyl isocyanates forming sulfonylimino phospholes in high yields. This facile modification proved to be a powerful tool for obtaining new phosphole-based aggregation-induced emission (AIE) luminogens with high fluorescence quantum yields in the solid state. Changing the chemical environment of the phosphorus atom of the phosphole framework results in a significant shift of the fluorescence maximum to longer wavelengths.

View Article and Find Full Text PDF

Prolonged lung pathology has been associated with COVID-19, yet the cellular and molecular mechanisms behind this chronic inflammatory disease are poorly understood. In this study, we combine advanced imaging and spatial transcriptomics to shed light on the local immune response in severe COVID-19. We show that activated adventitial niches are crucial microenvironments contributing to the orchestration of prolonged lung immunopathology.

View Article and Find Full Text PDF

Background: SARS-CoV-2 replicates efficiently in the upper airways of humans and produces high loads of virus RNA and, at least in the initial phase after infection, many infectious virus particles. Studying virus ultrastructure, such as particle integrity or presence of spike proteins, and effects on their host cells in patient samples is important to understand the pathogenicity of SARS-CoV-2.

Methods: Suspensions from swab samples with a high load of virus RNA (Ct < 20) were sedimented by desktop ultracentrifugation and prepared for thin section electron microscopy using a novel method which is described in detail.

View Article and Find Full Text PDF

SARS-CoV-2 and its emerging variants of concern remain a major threat for global health. Here we introduce an infection model based upon polarized human Alveolar Epithelial Lentivirus immortalized (hAELVi) cells grown at the air-liquid interface to estimate replication and epidemic potential of respiratory viruses in the human lower respiratory tract. hAELVI cultures are highly permissive for different human coronaviruses and seasonal influenza A virus and upregulate various mediators following virus infection.

View Article and Find Full Text PDF

The biotechnology- and medicine-relevant fungus is a common colonizer of indoor habitats such as the International Space Station (ISS). Being able to colonize and biodegrade a wide range of surfaces, can ultimately impact human health and habitat safety. Surface contamination relies on two key-features of the fungal colony: the fungal spores, and the vegetative mycelium, also known as biofilm.

View Article and Find Full Text PDF

Background: Autopsy studies have provided valuable insights into the pathophysiology of COVID-19. Controversies remain about whether the clinical presentation is due to direct organ damage by SARS-CoV-2 or secondary effects, such as overshooting immune response. SARS-CoV-2 detection in tissues by RT-qPCR and immunohistochemistry (IHC) or electron microscopy (EM) can help answer these questions, but a comprehensive evaluation of these applications is missing.

View Article and Find Full Text PDF

Insect olfactory sensilla house olfactory sensory neurons (OSNs) and supports cells (SCs). The olfactory sensory processes require, besides the odorant receptors (ORs), insect-specific members of the CD36 family, named sensory neuron membrane proteins (SNMPs). While SNMP1 is considered to act as a coreceptor in the OR-mediated detection of pheromones, SNMP2 was found to be expressed in SCs; however, its function is unknown.

View Article and Find Full Text PDF

Enteroviruses (EV) are implicated in an extensive range of clinical manifestations, such as pancreatic failure, cardiovascular disease, hepatitis, and meningoencephalitis. We recently reported on the biochemical properties of the highly conserved cysteine residue at position 38 (C38) of enteroviral protein 3A and demonstrated a C38-mediated homodimerization of the Coxsackievirus B3 protein 3A (CVB3-3A) that resulted in its profound stabilization. Here, we show that residue C38 of protein 3A supports the replication of CVB3, a clinically relevant member of the enterovirus genus.

View Article and Find Full Text PDF

Ultrastructural analysis of autopsy samples from COVID-19 patients usually suffers from significant structural impairment possibly caused by the rather long latency between death of the patient and an appropriate sample fixation. To improve structural preservation of the tissue, we obtained samples from ventilated patients using a trans-bronchial "cryobiopsy" within 30 min after their death and fixed them immediately for electron microscopy. Samples of six COVID-19 patients with a documented histopathology were systematically investigated by thin section electron microscopy.

View Article and Find Full Text PDF

Background: Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al.

View Article and Find Full Text PDF

Apicomplexan parasites, such as Toxoplasma gondii, are unusual in that each cell contains a single apicoplast, a plastid-like organelle that compartmentalizes enzymes involved in the essential 2C-methyl-D-erythritol 4-phosphate pathway of isoprenoid biosynthesis. The last two enzymatic steps in this organellar pathway require electrons from a redox carrier. However, the small iron-sulfur cluster-containing protein ferredoxin, a likely candidate for this function, has not been investigated in this context.

View Article and Find Full Text PDF