Publications by authors named "Michael Laska"

Background: We evaluated safety and immunogenicity of the first mRNA vaccines against potentially pandemic avian H10N8 and H7N9 influenza viruses.

Methods: Two randomized, placebo-controlled, double-blind, phase 1 clinical trials enrolled participants between December 2015 and August 2017 at single centers in Germany (H10N8) and USA (H7N9). Healthy adults (ages 18-64 years for H10N8 study; 18-49 years for H7N9 study) participated.

View Article and Find Full Text PDF

The pharmacology, pharmacokinetics, and safety of modified mRNA formulated in lipid nanoparticles (LNPs) were evaluated after repeat intravenous infusion to rats and monkeys. In both species, modified mRNA encoding the protein for human erythropoietin (hEPO) had predictable and consistent pharmacologic and toxicologic effects. Pharmacokinetic analysis conducted following the first dose showed that measured hEPO levels were maximal at 6 hours after the end of intravenous infusion and in excess of 100-fold the anticipated efficacious exposure (17.

View Article and Find Full Text PDF

Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays.

View Article and Find Full Text PDF

Recombinant adenoviruses continue to be a leading vector choice for gene transfer applications, with growing interest in the use of less prevalent serotypes, and of chimeras. As a result, the development of scaleable purification processes for alternative serotypes is needed. Anion-exchange chromatography is routinely used for scaleable adenovirus type 5 purification; however, retention varies for other serotypes because of differences in the exposed capsid proteins.

View Article and Find Full Text PDF

Robust design of a dead end filtration step and the resulting performance at manufacturing scale relies on laboratory data collected with small filter units. During process development it is important to characterize and understand the filter fouling mechanisms of the process streams so that an accurate assessment can be made of the filter area required at manufacturing scale. Successful scale-up also requires integration of the lab-scale filtration data with an understanding of flow characteristics in the full-scale filtration equipment.

View Article and Find Full Text PDF