Context: In the Clinical Antipsychotic Trials of Intervention Effectiveness, atypical antipsychotics (AAPs) were found to be associated with weight gain and impairment of glucose metabolism. While metformin has been shown to attenuate weight gain and insulin resistance, not all studies have shown a benefit in the reduction of antipsychotic-induced weight gain and insulin resistance.
Objective: To characterize metformin's impact on anthropometrics and insulin resistance in patients taking AAPs.
The current study was aimed at examining the role of cytochrome P450 (CYP450) activation and the electrophile-sensitive transient receptor potential ankyrin 1 receptor (TRPA1) in mediating the sensory irritation response to styrene and naphthalene. Toward this end, the sensory irritation to these vapors was measured in female C57Bl/6J mice during 15-min exposure via plethysmographic measurement of the duration of braking at the onset of each expiration. The sensory irritation response to 75 ppm styrene and 7 ppm naphthalene was diminished threefold or more in animals pretreated with the CYP450 inhibitor metyrapone, providing evidence of the role of metabolic activation in the response to these vapors.
View Article and Find Full Text PDFBackground: Green tea catechins (GTCs) with or without caffeine have been studied in randomized controlled trials (RCTs) for their effect on anthropometric measures and have yielded conflicting results.
Objective: The objective was to perform a systematic review and meta-analysis of RCTs of GTCs on anthropometric variables, including body mass index (BMI), body weight, waist circumference (WC), and waist-to-hip ratio (WHR).
Design: A systematic literature search of MEDLINE, EMBASE, CENTRAL, and the Natural Medicines Comprehensive Database was conducted through April 2009.
The nose is innervated with both odor responsive olfactory (cranial nerve I) and irritant responsive trigeminal (cranial nerve V) nerves. The nature and extent of any interactions between these two nerves is poorly understood. The aim of the current study was to determine if two sulfur-containing malodorants, ethyl sulfide and t-butyl sulfide, modulated responsiveness to the trigeminal C fiber stimulant capsaicin using female C57Bl/6J mice as an experimental model.
View Article and Find Full Text PDFThe molecular mechanisms through which sensory irritants stimulate nasal trigeminal nerves are poorly understood. The current study was aimed at evaluating the potential contribution of purinergic sensory transduction pathways in this process. Aerosols of 4-36 mM adenosine 5'-triphosphate (ATP) and adenosine both acted as sensory irritants.
View Article and Find Full Text PDF