Publications by authors named "Michael Lakatos"

Cyanobacteria are the oldest photoautotrophic lineage that release oxygen during photosynthesis, an ability that possibly evolved as far as 3.5 billion years ago and changed the Earth's environment-both in water and on land. Linked to the mechanism of carbon accumulation by cyanobacteria during photosynthesis are their calcifying properties, a process of biologically mediated mineralization of CO by precipitation with calcium to CaCO.

View Article and Find Full Text PDF

Thermophilic cyanobacteria thrive in extreme environments, making their thermoresistant enzymes valuable for industrial applications. Common habitats include hot springs, which act as evolutionary accelerators for speciation due to geographical isolation. The family Thermosynechococcaceae comprises thermophilic cyanobacteria known for their ability to thrive in high-temperature environments.

View Article and Find Full Text PDF

Biocrusts represent associations of lichens, green algae, cyanobacteria, fungi and other microorganisms, colonizing soils in varying proportions of principally arid biomes. The so-called grit crust represents a recently discovered type of biocrust situated in the Coastal Range of the Atacama Desert (Chile) made of microorganisms growing on and in granitoid pebbles, resulting in a checkerboard pattern visible to the naked eye on the landscape scale. This specific microbiome fulfills a broad range of ecosystem services, all probably driven by fog and dew-induced photosynthetic activity of mainly micro-lichens.

View Article and Find Full Text PDF

Lichens are remarkable and classic examples of symbiotic organisms that have fascinated scientists for centuries. Yet, it has only been for a couple of decades that significant advances have focused on the diversity of their green algal and/or cyanobacterial photobionts. Cyanolichens, which contain cyanobacteria as their photosynthetic partner, include up to 10% of all known lichens and, as such, studies on their cyanobionts are much rarer compared to their green algal counterparts.

View Article and Find Full Text PDF

Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites.

View Article and Find Full Text PDF

The transformation of modern industries towards enhanced sustainability is facilitated by green technologies that rely extensively on rare earth elements (REEs) such as cerium (Ce), neodymium (Nd), terbium (Tb), and lanthanum (La). The occurrence of productive mining sites, e.g.

View Article and Find Full Text PDF

Over the decades our understanding of lichens has shifted to the fact that they are multiorganismic, symbiotic microecosystems, with their complex interactions coming to the fore due to recent advances in microbiomics. Here, we present a mutualistic-parasitic continuum dynamics scenario between an orange lichen and a lichenicolous fungus from the Atacama Desert leading to the decay of the lichen's photobiont and leaving behind a black lichen thallus. Based on isolation, sequencing, and ecophysiological approaches including metabolic screenings of the symbionts, we depict consequences upon infection with the lichenicolous fungus.

View Article and Find Full Text PDF

Some deserts on Earth such as the Namib or the Atacama are influenced by fog which can lead to the formation of local fog oases - unique environments hosting a great diversity of specialized plants and lichens. Lichens of the genera , or have taxonomically been investigated from fog oases around the globe but not from the Atacama Desert, one of the oldest and driest deserts. Conditioned by its topography and the presence of orographic fog, the National Park Pan de Azúcar in the Atacama Desert is considered to be such a lichen hotspot.

View Article and Find Full Text PDF

Biosorption of metal ions by phototrophic microorganisms is regarded as a sustainable and alternative method for bioremediation and metal recovery. In this study, 12 cyanobacterial strains, including 7 terrestrial and 5 aquatic cyanobacteria, covering a broad phylogenetic diversity were investigated for their potential application in the enrichment of rare earth elements through biosorption. A screening for the maximum adsorption capacity of cerium, neodymium, terbium, and lanthanum was conducted in which sp.

View Article and Find Full Text PDF

The ability to adapt to wide ranges of environmental conditions coupled with their long evolution has allowed cyanobacteria to colonize almost every habitat on Earth. Modern taxonomy tries to track not only this diversification process but also to assign individual cyanobacteria to specific niches. It was our aim to work out a potential niche concept for the genus in terms of salt tolerance.

View Article and Find Full Text PDF

In analogy to higher plants, eukaryotic microalgae are thought to be incapable of utilizing green light for growth, due to the "green gap" in the absorbance profiles of their photosynthetic pigments. This study demonstrates, that the marine chlorophyte . is able to grow efficiently under green light emitting diode (LED) illumination.

View Article and Find Full Text PDF

Productive biofilms are gaining growing interest in research due to their potential of producing valuable compounds and bioactive substances such as antibiotics. This is supported by recent developments in biofilm photobioreactors that established the controlled phototrophic cultivation of algae and cyanobacteria. Cultivation of biofilms can be challenging due to the need of surfaces for biofilm adhesion.

View Article and Find Full Text PDF

The last decades of research led to a change in understanding of lichens that are now seen as self-sustaining micro-ecosystems, harboring diverse microbial organisms in tight but yet not fully understood relationships. Among the diverse interdependencies, the relationship between the myco- and photobiont is the most crucial, determining the shape, and ecophysiological properties of the symbiotic consortium. Roughly 10% of lichens associate with cyanobacteria as their primary photobiont, termed cyanolichens.

View Article and Find Full Text PDF

Phototrophic biofilms, in particular terrestrial cyanobacteria, offer a variety of biotechnologically interesting products such as natural dyes, antibiotics or dietary supplements. However, phototrophic biofilms are difficult to cultivate in submerged bioreactors. A new generation of biofilm photobioreactors imitates the natural habitat resulting in higher productivity.

View Article and Find Full Text PDF

Unicellular cyanobacteria inhabit a wide range of ecosytems and can be found throughout the phylum offering space for taxonomic confusion. One example is strain PCC 6712 that was described as sp. (Nostocales) and later assigned to the genus (Chroococcidiopsidales).

View Article and Find Full Text PDF

The taxonomy of coccoid cyanobacteria, such as , , , , , , and the related recent genera and , can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera.

View Article and Find Full Text PDF

Since 1965 a cyanobacterial strain termed ' 108b' was the object of several studies investigating its potential as a resource for new bioactive compounds in several European institutes. Over decades these investigations uncovered several unique small molecules and their respective biosynthetic pathways, including the polychlorinated triphenyls of the ambigol family and the tjipanazoles. However, the true taxonomic character of the producing strain remained concealed until now.

View Article and Find Full Text PDF

Biodiversity forms the basis for a large pool of potential products and productive organisms offered by terrestrial cyanobacteria. They are stuck together by EPS (extracellular polymeric substances) that can obtain antiviral, antibacterial or anti-inflammatory substances. Most stress conditions, e.

View Article and Find Full Text PDF

• Additional water supplied by dew formation is an important resource for microbes, plants and animals in precipitation-limited habitats, but has received little attention in tropical forests until now. • We evaluated the micro-environmental conditions of tree stem surfaces and their epiphytic organisms in a neotropical forest, and present evidence for a novel mechanism of diurnal dew formation on these surfaces until midday that has physiological implications for corticolous epiphytes such as lichens. • In the understorey of a lowland forest in French Guiana, heat storage of stems during the day and delayed radiative loss during the night decreased stem surface temperatures by 6°C in comparison to the dew-point temperature of ambient air.

View Article and Find Full Text PDF

Background And Aims: Forest edges created by fragmentation strongly affect the abiotic and biotic environment. A rarely studied consequence is the resulting impact on non-vascular plants such as poikilohydric lichens, known to be highly sensitive to changes in the microenvironment. We evaluated the impact of forest edge and forest interior on the distribution of two groups of crustose lichens characterized by the presence or absence of a cortex and sought explanations of the outcome in terms of photosynthetic response and water relations.

View Article and Find Full Text PDF

The stable isotopic composition of water is routinely used as a tracer to study water exchange processes in vascular plants and ecosystems. To date, no study has focussed on isotope processes in non-vascular, poikilohydric organisms such as lichens and bryophytes. To understand basic isotope exchange processes of non-vascular plants, thallus water isotopic composition was studied in various green-algal lichens exposed to desiccation.

View Article and Find Full Text PDF

In tropical lowland forests, corticolous crustose green algal lichens are abundant and highly diverse. This may be related to adaptation to prevailing microenvironmental conditions including, for example, high precipitation and low light intensities. In the understory of a tropical lowland rain forest in French Guiana, we studied the morphology of crustose green algal lichens and measured gas exchange and chlorophyll a fluorescence.

View Article and Find Full Text PDF