Publications by authors named "Michael Lagunoff"

Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF

Kaposi's Sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS), a highly vascularized tumor common in AIDS patients and many countries in Africa. KSHV is predominantly in the latent state in the main KS tumor cell, the spindle cell, a cell expressing endothelial cell markers. To identify host genes important for KSHV latent infection of endothelial cells we previously used a global CRISPR/Cas9 screen to identify genes necessary for the survival or proliferation of latently infected cells.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) causes several human diseases including Kaposi's sarcoma (KS), a leading cause of cancer in Africa and in patients with AIDS. KS tumor cells harbor KSHV predominantly in a latent form, while typically <5% contain lytic replicating virus. Because both latent and lytic stages likely contribute to cancer initiation and progression, continued dissection of host regulators of this biological switch will provide insights into fundamental pathways controlling the KSHV life cycle and related disease pathogenesis.

View Article and Find Full Text PDF
Article Synopsis
  • Viruses pose significant health challenges, leading to issues like respiratory infections, cancer, and neurological impairments, but virology research has developed vaccines and antivirals to mitigate these problems.
  • The COVID-19 pandemic has heightened public scrutiny of virology, especially regarding the safe conduct of research with human pathogens, leading to confusion and misinterpretation about the origins of SARS-CoV-2.
  • This article aims to clarify misconceptions by explaining gain-of-function research, the origins of SARS-CoV-2, and the regulatory frameworks in place, fostering informed discussions and emphasizing the need for balanced, evidence-based dialogue in virology.
View Article and Find Full Text PDF
Article Synopsis
  • Viruses have historically caused serious health issues, including respiratory infections and cancer, leading to significant virology research that resulted in vaccines and antiviral treatments.
  • The COVID-19 pandemic highlighted the necessity for careful research on human pathogens, creating both concerns and confusion about the safety of virology work and the origins of SARS-CoV-2.
  • The article aims to clarify misunderstandings by explaining gain-of-function research, exploring the origins of SARS-CoV-2, and discussing regulatory oversight, while advocating for rational and evidence-based discussions to guide policy decisions in virology.
View Article and Find Full Text PDF
Article Synopsis
  • Viruses pose significant health challenges, leading to various issues such as respiratory infections and cancer, prompting virology research to develop vaccines and antiviral treatments over the past 60+ years.
  • The COVID-19 pandemic has intensified focus on virology, bringing up safety concerns about research involving human pathogens and creating public confusion between safe research practices and the origins of SARS-CoV-2.
  • The article aims to clarify these issues by discussing gain-of-function research, the origins of SARS-CoV-2, and current regulatory frameworks, advocating for informed, balanced conversations to support necessary virology research.
View Article and Find Full Text PDF

Kaposi's sarcoma herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), a hyperplasia consisting of enlarged malformed vasculature and spindle-shaped cells, the main proliferative component of KS. While spindle cells express markers of lymphatic and blood endothelium, the origin of spindle cells is unknown. Endothelial precursor cells have been proposed as the source of spindle cells.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL). The main proliferating component of KS tumors is a cell of endothelial origin termed the spindle cell. Spindle cells are predominantly latently infected with only a small percentage of cells undergoing viral replication.

View Article and Find Full Text PDF

Kaposi's Sarcoma Herpesvirus (KSHV) is present in the main tumor cells of Kaposi's Sarcoma (KS), the spindle cells, which are of endothelial origin. KSHV is also associated with two B-cell lymphomas, Primary Effusion Lymphoma (PEL) and Multicentric Castleman's Disease. In KS and PEL, KSHV is primarily latent in the infected cells, expressing only a few genes.

View Article and Find Full Text PDF

During DNA virus infections, detection of cytosolic DNA by the cGAS-STING pathway leads to activation of IFN-β. Kaposi's Sarcoma Herpesvirus (KSHV), an oncogenic DNA virus, is the etiological agent of Kaposi's Sarcoma, an endothelial cell (EC)-based tumor. To investigate the role of STING during KSHV infection of primary ECs we identified a primary lymphatic EC sample that is defective for STING activation and we also knocked out STING in blood ECs.

View Article and Find Full Text PDF

Viruses manipulate numerous host factors and cellular pathways to facilitate the replication of viral genomes and the production of infectious progeny. One way in which viruses interact with cells is through the utilization and exploitation of the host lipid metabolism. While it is likely that most-if not all-viruses require lipids or intermediates of lipid synthesis to replicate, many viruses also actively induce lipid metabolic pathways to sustain a favorable replication environment.

View Article and Find Full Text PDF

The transcriptome of the Kaposi's sarcoma-associated herpesvirus (KSHV/HHV8) after primary latent infection of human blood (BEC), lymphatic (LEC) and immortalized (TIME) endothelial cells was analyzed using RNAseq, and compared to long-term latency in BCBL-1 lymphoma cells. Naturally expressed transcripts were obtained without artificial induction, and a comprehensive annotation of the KSHV genome was determined. A set of unique coding sequence (UCDS) features and a process to resolve overlapping transcripts were developed to accurately quantitate transcript levels from specific promoters.

View Article and Find Full Text PDF

Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS). KSHV infection induces and requires multiple metabolic pathways, including the glycolysis, glutaminolysis, and fatty acid synthesis (FAS) pathways, for the survival of latently infected endothelial cells. To determine the metabolic requirements for productive KSHV infection, we induced lytic replication in the presence of inhibitors of different metabolic pathways.

View Article and Find Full Text PDF

Kaposi's Sarcoma associated Herpesvirus (KSHV), an oncogenic, human gamma-herpesvirus, is the etiological agent of Kaposi's Sarcoma the most common tumor of AIDS patients world-wide. KSHV is predominantly latent in the main KS tumor cell, the spindle cell, a cell of endothelial origin. KSHV modulates numerous host cell-signaling pathways to activate endothelial cells including major metabolic pathways involved in lipid metabolism.

View Article and Find Full Text PDF

Herpesviruses can establish latent infections in the host with severely limited viral gene expression. Kaposi's Sarcoma-associated herpesvirus (KSHV) is found predominantly in the latent state in the main KS tumor cell, a cell of endothelial origin. While many viruses alter host cell metabolism during productive infection, latent KSHV infection of endothelial cells activates metabolic pathways that are activated in many cancer cells.

View Article and Find Full Text PDF

Rationale: The identification of circulating endothelial progenitor cells has led to speculation regarding their origin as well as their contribution to neovascular development. Two distinct types of endothelium make up the blood and lymphatic vessel system. However, it has yet to be determined whether there are distinct lymphatic-specific circulating endothelial progenitor cells.

View Article and Find Full Text PDF

Kaposi's Sarcoma-associated Herpesvirus (KSHV) is the etiologic agent of Kaposi's Sarcoma (KS). KSHV establishes a predominantly latent infection in the main KS tumor cell type, the spindle cell, which is of endothelial cell origin. KSHV requires the induction of multiple metabolic pathways, including glycolysis and fatty acid synthesis, for the survival of latently infected endothelial cells.

View Article and Find Full Text PDF

To ensure optimal environments for their replication and spread, viruses have evolved to alter many host cell pathways. In the last decade, metabolomic studies have shown that eukaryotic viruses induce large-scale alterations in host cellular metabolism. Most viruses examined to date induce aerobic glycolysis also known as the Warburg effect.

View Article and Find Full Text PDF

Nelfinavir (NFV) is an HIV-1 aspartyl protease inhibitor that has numerous effects on human cells, which impart attractive antitumor properties. NFV has also been shown to have in vitro inhibitory activity against human herpesviruses (HHVs). Given the apparent absence of an aspartyl protease encoded by HHVs, we investigated the mechanism of action of NFV herpes simplex virus type 1 (HSV-1) in cultured cells.

View Article and Find Full Text PDF

The thymidine kinases (TK) of alphaherpesviruses phosphorylate nucleosides, allowing viral replication in non-dividing cells. They also phosphorylate acyclovir (ACV), a specific antiviral when modified. Despite encoding a TK homolog, Kaposi's sarcoma-associated herpesvirus (KSHV), a gammaherpesvirus, is relatively immune to the effects of ACV.

View Article and Find Full Text PDF

Unlabelled: Viruses rely on host cellular metabolism to provide the energy and biosynthetic building blocks required for their replication. Dengue virus (DENV), a member of the Flaviviridae family, is one of the most important arthropod-borne human pathogens worldwide. We analyzed global intracellular metabolic changes associated with DENV infection of primary human cells.

View Article and Find Full Text PDF

Unlabelled: Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi's sarcoma (KS), the most common tumor of AIDS patients worldwide. A key characteristic of KS tumors is extremely high levels of vascular slits and extravasated red blood cells, making neoangiogenesis a key component of the tumor. The main KS tumor cell is the spindle cell, a cell of endothelial origin that maintains KSHV predominantly in the latent state.

View Article and Find Full Text PDF

Human herpesvirus 8 (HHV8) infection leads to potent activation of nuclear factor kappa B (NFκB) in primary and transformed cells. We used recombinant HHV8 (rKSHV.219) expressing green fluorescent protein under the constitutive cellular promoter elongation factor 2α and red fluorescent protein under an early HHV8 lytic gene promoter T1.

View Article and Find Full Text PDF

Unlabelled: Viruses require host cell metabolism to provide the necessary energy and biosynthetic precursors for successful viral replication. Vaccinia virus (VACV) is a member of the Poxviridae family, and its use as a vaccine enabled the eradication of variola virus, the etiologic agent of smallpox. A global metabolic screen of VACV-infected primary human foreskin fibroblasts suggested that glutamine metabolism is altered during infection.

View Article and Find Full Text PDF