Publications by authors named "Michael L Zee"

Tolerance to the antinociceptive effects of cannabinoids represents a significant limitation to their clinical use in managing chronic pain. Tolerance likely results from desensitization and down-regulation of the cannabinoid type 1 receptor (CBR), with CBR desensitization occurring via phosphorylation of CBRs by a G protein-coupled receptor kinase and subsequent association with an arrestin protein. Previous studies have shown that (1) desensitization-resistant S426A/S430A mice exhibit a modest delay in tolerance for Δ-THC and (-)-CP55,940 but a more pronounced disruption in tolerance for WIN 55,212-2 and (2) that c-Jun N-terminal kinase (JNK) signaling may selectively mediate antinociceptive tolerance to morphine compared to other opioid analgesics.

View Article and Find Full Text PDF

To identify neuropeptides that are regulated by cocaine, we used a quantitative peptidomic technique to examine the relative levels of neuropeptides in several regions of mouse brain following daily intraperitoneal administration of 10 mg/kg cocaine or saline for 7 days. A total of 102 distinct peptides were identified in one or more of the following brain regions: nucleus accumbens, caudate putamen, frontal cortex, and ventral tegmental area. None of the peptides detected in the caudate putamen or frontal cortex were altered by cocaine administration.

View Article and Find Full Text PDF

We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a "hyper-sensitive" form of CB1.

View Article and Find Full Text PDF

Multiple lines of evidence implicate the endocannabinoid signaling system in the modulation of metabolic disease. Genetic or pharmacological inactivation of CB1 in rodents leads to reduced body weight, resistance to diet-induced obesity, decreased intake of highly palatable food, and increased energy expenditure. Cannabinoid agonists stimulate feeding in rodents and increased levels of endocannabinoids can disrupt lipid metabolism.

View Article and Find Full Text PDF

The abuse and overdose of opioid drugs are growing public health problems worldwide. Although progress has been made toward understanding the mechanisms governing tolerance to opioids, the exact cellular machinery involved remains unclear. However, there is growing evidence to suggest that c-Jun N-terminal kinases (JNKs) play a major role in mu-opioid receptor regulation and morphine tolerance.

View Article and Find Full Text PDF

The rewarding and antinociceptive effects of opioids are mediated through the mu-opioid receptor. The A118G single nucleotide polymorphism in this receptor has been implicated in drug addiction and differences in pain response. Clinical and preclinical studies have found that the G allele is associated with increased heroin reward and self-administration, elevated post-operative pain, and reduced analgesic responsiveness to opioids.

View Article and Find Full Text PDF